Brillouin optical time domain reflectometry for fast detection of dynamic strain incorporating double-edge technique

被引:24
作者
Shangguan, Mingjia [1 ,2 ,3 ,5 ]
Wang, Chong [3 ]
Xia, Haiyun [3 ,4 ,5 ]
Shentu, Guoliang [1 ,2 ,5 ]
Dou, Xiankang [3 ]
Zhang, Qiang [1 ,2 ,5 ,6 ]
Pan, Jian-wei [1 ,2 ,5 ]
机构
[1] USTC, Shanghai Branch, Natl Lab Phys Sci Microscale, Shanghai 201315, Peoples R China
[2] USTC, Dept Modern Phys, Shanghai 201315, Peoples R China
[3] USTC, CAS Key Lab Geospace Environm, Hefei 230026, Peoples R China
[4] HIT, Collaborat Innovat Ctr Astronaut Sci & Technol, Harbin 150001, Peoples R China
[5] USTC, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Peoples R China
[6] Jinan Inst Quantum Technol, Jinan 250101, Shandong, Peoples R China
关键词
Brillouin optical time-domain reflectometry; Up-conversion technique; Fabry-Perot interferometer; UP-CONVERSION; DOPPLER LIDAR; DISTRIBUTED STRAIN; TEMPERATURE; SENSOR; WIND; SCATTERING; SYSTEM;
D O I
10.1016/j.optcom.2017.04.033
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
For the first time, to the best of our knowledge, a direct detection Brillouin optical time-domain refiectometry (BOTDR) is demonstrated for fast distributed dynamic strain sensing incorporating double-edge technique, time-division multiplexing technique and upconversion technique. In order to guarantee the robust stability of the system, the double-edge technique is implemented by using a convert single-channel FPI and a fiber coupled upconversion single-photon detector, incorporating a time-division multiplexing method. The upconversion single-photon detector is adopted to upconvert the backscattering photons from 1548.1 nm to 863 nm, which is subsequently detected by a Silicon avalanche photodiode (Si-APD). In the experiment, dynamic strain disturbance up to 1.9 m epsilon over 1.5 km of a polarization maintaining fiber is detected at a sampling rate of 30 Hz. An accuracy of +/- 30 mu epsilon and spatial resolution of 0.6 m are realized.
引用
收藏
页码:95 / 100
页数:6
相关论文
共 29 条
[1]   Distributed fiber-optic sensor for dynamic strain measurement [J].
Chaube, Prabodh ;
Colpitts, Bruce G. ;
Jagannathan, Deepak ;
Brown, Anthony W. .
IEEE SENSORS JOURNAL, 2008, 8 (7-8) :1067-1072
[2]   1.5 μm photon-counting optical time-domain reflectometry with a single-photon detector based on upconversion in a periodically poled lithium niobate waveguide [J].
Diamanti, E ;
Langrock, C ;
Fejer, MM ;
Yamamoto, Y ;
Takesue, H .
OPTICS LETTERS, 2006, 31 (06) :727-729
[3]   Brillouin Distributed Fiber Sensors: An Overview and Applications [J].
Galindez-Jamioy, C. A. ;
Lopez-Higuera, J. M. .
JOURNAL OF SENSORS, 2012, 2012
[4]   BRILLOUIN-SCATTERING MEASUREMENTS ON OPTICAL-GLASSES [J].
HEIMAN, D ;
HAMILTON, DS ;
HELLWARTH, RW .
PHYSICAL REVIEW B, 1979, 19 (12) :6583-6592
[5]   DEVELOPMENT OF A DISTRIBUTED SENSING TECHNIQUE USING BRILLOUIN-SCATTERING [J].
HORIGUCHI, T ;
SHIMIZU, K ;
KURASHIMA, T ;
TATEDA, M ;
KOYAMADA, Y .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 1995, 13 (07) :1296-1302
[6]  
Hotate Kazuo, 2008, SICE Journal of Control, Measurement, and System Integration, V1, P271, DOI 10.9746/jcmsi.1.271
[7]   Fiber distributed Brillouin sensing with optical correlation domain techniques [J].
Hotate, Kazuo .
OPTICAL FIBER TECHNOLOGY, 2013, 19 (06) :700-719
[8]   All-fiber system for simultaneous interrogation of distributed strain and temperature sensing by spontaneous Brillouin scattering [J].
Kee, HH ;
Lees, GP ;
Newson, TP .
OPTICS LETTERS, 2000, 25 (10) :695-697
[9]  
Kishida K, 2006, PROC MONOGR ENG WATE, P471
[10]  
Koizumi K., 2015, IEEE EUR C, P1