The Structure of Constacyclic Codes of Length 2ps over Finite Chain Rings

被引:0
作者
Sriwirach, Wateekorn [1 ]
Klin-eam, Chakkrid [1 ]
机构
[1] Naresuan Univ, Fac Sci, Dept Math, Phitsanulok 65000, Thailand
来源
THAI JOURNAL OF MATHEMATICS | 2019年 / 17卷 / 02期
关键词
constacyclic codes; repeated-root codes; local rings; code over rings; finite chain rings; Z(4) CYCLIC CODES; NEGACYCLIC CODES; PREPARATA; KERDOCK; 2(S);
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a finite commutative chain ring with identity of characteristic p(a) that has maximal ideal < z >. In this paper, we study lambda-constacyclic codes of length 2p(s) over R, for any unit lambda of R. If the unit lambda is not a square, the rings R-lambda = R[x]/< x(2)p(s) - lambda > is a local ring with maximal ideal < x(2) - r, z >, where r is an element of R such that lambda - r(ps) is not invertible. When there exists a unit lambda(0) of R such that lambda = lambda(ps)(0), we prove that x(2) - lambda(0) is nilpotent with nilpotency index ap(s) - (a - 1) p(s-1). When lambda = lambda(ps)(0) + zw, for some unit omega of R, we show that R-lambda is also a chain ring with maximal ideals < x(2) - lambda(0)>. Furthermore, the algebraic structure and dual of all lambda-constacyclic codes are obtained.
引用
收藏
页码:413 / 429
页数:17
相关论文
共 24 条
[11]   On Some Classes of Repeated-root Constacyclic Codes of Length a Power of 2 over Galois Rings [J].
Dinh, Hai Q. .
ADVANCES IN RING THEORY, 2010, :131-147
[12]   Negacyclic codes of length 2s over Galois rings [J].
Dinh, HQ .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (12) :4252-4262
[13]   Cyclic and negacyclic codes over finite chain rings [J].
Dinh, HQ ;
López-Permouth, SR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (08) :1728-1744
[14]  
Dougherty ST, 2006, DESIGN CODE CRYPTOGR, V39, P127, DOI 10.1007/s10623-005-2773-x
[15]   THE Z4-LINEARITY OF KERDOCK, PREPARATA, GOETHALS, AND RELATED CODES [J].
HAMMONS, AR ;
KUMAR, PV ;
CALDERBANK, AR ;
SLOANE, NJA ;
SOLE, P .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1994, 40 (02) :301-319
[16]  
Huffman WC., 2010, FUNDAMENTALS ERROR C
[17]   Cyclic codes over GR(p2, m) of length pk [J].
Kiah, Han Mao ;
Leung, Ka Hin ;
Ling, San .
FINITE FIELDS AND THEIR APPLICATIONS, 2008, 14 (03) :834-846
[18]  
KLEINFELD E, 1959, ILLINOIS J MATH, V3, P403, DOI DOI 10.1215/IJM/1255455261
[19]  
MacWilliams F., 1998, THEORY ERROR CORRECT
[20]  
McDonald BR., 1974, Finite rings with identity