The Structure of Constacyclic Codes of Length 2ps over Finite Chain Rings

被引:0
作者
Sriwirach, Wateekorn [1 ]
Klin-eam, Chakkrid [1 ]
机构
[1] Naresuan Univ, Fac Sci, Dept Math, Phitsanulok 65000, Thailand
来源
THAI JOURNAL OF MATHEMATICS | 2019年 / 17卷 / 02期
关键词
constacyclic codes; repeated-root codes; local rings; code over rings; finite chain rings; Z(4) CYCLIC CODES; NEGACYCLIC CODES; PREPARATA; KERDOCK; 2(S);
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a finite commutative chain ring with identity of characteristic p(a) that has maximal ideal < z >. In this paper, we study lambda-constacyclic codes of length 2p(s) over R, for any unit lambda of R. If the unit lambda is not a square, the rings R-lambda = R[x]/< x(2)p(s) - lambda > is a local ring with maximal ideal < x(2) - r, z >, where r is an element of R such that lambda - r(ps) is not invertible. When there exists a unit lambda(0) of R such that lambda = lambda(ps)(0), we prove that x(2) - lambda(0) is nilpotent with nilpotency index ap(s) - (a - 1) p(s-1). When lambda = lambda(ps)(0) + zw, for some unit omega of R, we show that R-lambda is also a chain ring with maximal ideals < x(2) - lambda(0)>. Furthermore, the algebraic structure and dual of all lambda-constacyclic codes are obtained.
引用
收藏
页码:413 / 429
页数:17
相关论文
共 24 条
[1]   A mass formula and rank of Z4 cyclic codes of length 2e [J].
Abualrub, T ;
Ghrayeb, A ;
Oehmke, RH .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (12) :3306-3312
[2]   On the generators of Z4 cyclic codes of length 2e [J].
Abualrub, T ;
Oehmke, R .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (09) :2126-2133
[3]  
Berman S. D., 1967, Cybernetics, V3, P17, DOI 10.1007/BF01119999
[4]   Cyclic codes over Z4 of oddly even length [J].
Blackford, T .
DISCRETE APPLIED MATHEMATICS, 2003, 128 (01) :27-46
[5]   Negacyclic codes over Z4 of even length [J].
Blackford, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (06) :1417-1424
[6]   A LINEAR CONSTRUCTION FOR CERTAIN KERDOCK AND PREPARATA CODES [J].
CALDERBANK, AR ;
HAMMONS, AR ;
KUMAR, PV ;
SLOANE, NJA ;
SOLE, P .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 29 (02) :218-222
[7]   Constacyclic codes of length 2ps over Fpm + uFpm [J].
Chen, Bocong ;
Dinh, Hai Q. ;
Liu, Hongwei ;
Wang, Liqi .
FINITE FIELDS AND THEIR APPLICATIONS, 2016, 37 :108-130
[8]  
Dinh H. Q., 2009, IEEE T INF THEORY, V55
[9]   Complete distances of all negacyclic codes of length 2S over Z2a [J].
Dinh, Hai Q. .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (01) :147-161
[10]   Repeated-root constacyclic codes of prime power lengths over finite chain rings [J].
Dinh, Hai Q. ;
Nguyen, Hien D. T. ;
Sriboonchitta, Songsak ;
Vo, Thang M. .
FINITE FIELDS AND THEIR APPLICATIONS, 2017, 43 :22-41