More Efficient Commitments from Structured Lattice Assumptions

被引:81
作者
Baum, Carsten [1 ]
Damgard, Ivan [2 ]
Lyubashevsky, Vadim [3 ]
Oechsner, Sabine [2 ]
Peikert, Chris [4 ]
机构
[1] Bar Ilan Univ, Dept Comp Sci, Ramat Gan, Israel
[2] Aarhus Univ, Dept Comp Sci, Aarhus, Denmark
[3] IBM Res Zurich, Ruschlikon, Switzerland
[4] Univ Michigan, Dept Comp Sci & Engn, Ann Arbor, MI 48109 USA
来源
SECURITY AND CRYPTOGRAPHY FOR NETWORKS, SCN 2018 | 2018年 / 11035卷
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
GENERALIZED COMPACT KNAPSACKS;
D O I
10.1007/978-3-319-98113-0_20
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present a practical construction of an additively homomorphic commitment scheme based on structured lattice assumptions, together with a zero-knowledge proof of opening knowledge. Our scheme is a design improvement over the previous work of Benhamouda et al. in that it is not restricted to being statistically binding. While it is possible to instantiate our scheme to be statistically binding or statistically hiding, it is most efficient when both hiding and binding properties are only computational. This results in approximately a factor of 4 reduction in the size of the proof and a factor of 6 reduction in the size of the commitment over the aforementioned scheme.
引用
收藏
页码:368 / 385
页数:18
相关论文
共 31 条
  • [1] Abdalla M, 2012, LECT NOTES COMPUT SC, V7237, P572, DOI 10.1007/978-3-642-29011-4_34
  • [2] Ajtai M., 1996, Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, P99, DOI 10.1145/237814.237838
  • [3] Revisiting TESLA in the Quantum Random Oracle Model
    Alkim, Erdem
    Bindel, Nina
    Buchmann, Johannes
    Dagdelen, Oezguer
    Eaton, Edward
    Gutoski, Gus
    Kraemer, Juliane
    Pawlega, Filip
    [J]. POST-QUANTUM CRYPTOGRAPHY, PQCRYPTO 2017, 2017, 10346 : 143 - 162
  • [4] [Anonymous], 2018, ESTIMATE ALL LWE NTR
  • [5] [Anonymous], 2009, Post quantum cryptography
  • [6] [Anonymous], COMPCON 1982
  • [7] Asharov G, 2012, LECT NOTES COMPUT SC, V7237, P483, DOI 10.1007/978-3-642-29011-4_29
  • [8] NEW BOUNDS IN SOME TRANSFERENCE THEOREMS IN THE GEOMETRY OF NUMBERS
    BANASZCZYK, W
    [J]. MATHEMATISCHE ANNALEN, 1993, 296 (04) : 625 - 635
  • [9] Efficient Zero-Knowledge Proofs for Commitments from Learning with Errors over Rings
    Benhamouda, Fabrice
    Krenn, Stephan
    Lyubashevsky, Vadim
    Pietrzak, Krzysztof
    [J]. COMPUTER SECURITY - ESORICS 2015, PT I, 2015, 9326 : 305 - 325
  • [10] Benhamouda F, 2014, LECT NOTES COMPUT SC, V8873, P551, DOI 10.1007/978-3-662-45611-8_29