Amyloid Fibril-Like Structure Underlies the Aggregate Structure across the pH Range for β-Lactoglobulin

被引:101
作者
Krebs, Mark R. H. [1 ]
Devlin, Glyn L. [1 ]
Donald, Athene M. [1 ]
机构
[1] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England
基金
英国工程与自然科学研究理事会;
关键词
TRANSFORM INFRARED-SPECTROSCOPY; SYNCHROTRON X-RAY; GLOBULAR PROTEIN; WHEY PROTEINS; ALZHEIMERS-DISEASE; PARTICULATE GELS; THIOFLAVINE-T; IN-VITRO; GELATION; CORE;
D O I
10.1016/j.bpj.2009.03.028
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The protein beta-lactoglobulin aggregates into two apparently distinct forms under different conditions: amyloid fibrils at pH values away from the isoelectric point, and spherical aggregates near it. To understand this apparent dichotomy in behavior, we studied the internal structure of the spherical aggregates by employing a range of biophysical approaches. Fourier transform infrared studies show the aggregates have a high beta-sheet content that is distinct from the native beta-lactoglobulin structure. The structures also bind the amyloidophilic dye thioflavin-T, and wide-angle x-ray diffraction showed reflections corresponding to spacings typically observed for amyloid fibrils composed of beta-lactoglobulin. Combined with small-angle x-ray scattering data indicating the presence of one-dimensional linear aggregates at the molecular level, these findings indicate strongly that the aggregates contain amyloid-like substructure. Incubation of beta-lactoglobulin at pH values increasingly removed from the isoelectric point resulted in the increasing appearance of fibrillar species, rather than spherical species shown by electron microscopy. Taken together, these results suggest that amyloid-like beta-sheet structures underlie protein aggregation over a much broader range of conditions than previously believed. Furthermore, the results suggest that there is a continuum of beta-sheet structure of varying regularity underlying the aggregate morphology, from very regular amyloid fibrils at high charge to short stretches of amyloid-like fibrils that associate together randomly to form spherical particles at low net charge.
引用
收藏
页码:5013 / 5019
页数:7
相关论文
共 57 条
[1]   Physical and chemical interactions in cold gelation of food proteins [J].
Alting, AC ;
de Jongh, HHJ ;
Visschers, RW ;
Simons, JWFA .
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2002, 50 (16) :4682-4689
[2]   Cold-set globular protein gels: Interactions, structure and rheology as a function of protein concentration [J].
Altlng, AC ;
Hamer, RJ ;
De Kruif, CG ;
Visschers, RW .
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2003, 51 (10) :3150-3156
[3]  
AMAUDOV LN, 2006, BIOMACROMOLECULES, V7, P3490
[4]  
[Anonymous], 1997, ESRF INTERNAL REPORT
[5]   Characterization and isolation of intermediates in β-lactoglobulin heat aggregation at high pH [J].
Bauer, R ;
Carrotta, R ;
Rischel, C ;
Ogendal, L .
BIOPHYSICAL JOURNAL, 2000, 79 (02) :1030-1038
[6]   Morphological development of β(1-40) amyloid fibrils [J].
Blackley, HKL ;
Patel, N ;
Davies, MC ;
Roberts, CJ ;
Tendler, SJB ;
Wilkinson, MJ ;
Williams, PM .
EXPERIMENTAL NEUROLOGY, 1999, 158 (02) :437-443
[7]   Synchrotron X-ray studies suggest that the core of the transthyretin amyloid fibril is a continuous beta-sheet helix [J].
Blake, C ;
Serpell, L .
STRUCTURE, 1996, 4 (08) :989-998
[8]   Mechanisms of structure formation in particulate gels of β-lactoglobulin formed near the isoelectric point [J].
Bromley, E. H. C. ;
Krebs, M. R. H. ;
Donald, A. M. .
EUROPEAN PHYSICAL JOURNAL E, 2006, 21 (02) :145-152
[9]   Aggregation across the length-scales in β-lactoglobulin [J].
Bromley, EHC ;
Krebs, MRH ;
Donald, AM .
FARADAY DISCUSSIONS, 2005, 128 :13-27
[10]   Designing conditions for in vitro formation of amyloid protofilaments and fibrils [J].
Chiti, F ;
Webster, P ;
Taddei, N ;
Clark, A ;
Stefani, M ;
Ramponi, G ;
Dobson, CM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (07) :3590-3594