Serotonin 5-HT2C receptor homodimer biogenesis in the endoplasmic reticulum -: Real-time visualization with confocal fluorescence resonance energy transfer

被引:89
作者
Herrick-Davis, Katharine [1 ]
Weaver, Barbara A. [1 ]
Grinde, Ellinor [1 ]
Mazurkiewicz, Joseph E. [1 ]
机构
[1] Albany Med Coll, Ctr Neuropharmacol & Neurosci, Albany, NY 12208 USA
关键词
D O I
10.1074/jbc.M604390200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Dimerization is a common property of G-protein-coupled receptors (GPCR). While the formation of GPCR dimers/oligomers has been reported to play important roles in regulating receptor expression, ligand binding, and second messenger activation, less is known about how and where GPCR dimerization occurs. The present study was performed to identify the precise cellular compartment in which class A GPCR dimer/oligomer biogenesis occurs. We addressed this issue using confocal microscopy and fluorescence resonance energy transfer (FRET) to monitor GPCR proximity within discrete intracellular compartments of intact living cells. Time-lapse confocal imaging was used to follow CFP- and YFP-tagged serotonin 5-HT2C receptors during biosynthesis in the endoplasmic reticulum (ER), trafficking through the Golgi apparatus and subsequent expression on the plasma membrane. Real-time monitoring of FRET between CFP- and YFP-tagged 5-HT2C receptors was performed by acceptor photobleaching within discrete regions of the ER, Golgi, and plasma membrane. The FRET signal was dependent on the ratio of CFP- to YFP-tagged 5-HT2C receptors expressed in each region and was independent of receptor expression level, as predicted for proteins in a non-random, clustered distribution. FRET efficiencies measured in the ER, Golgi, and plasma membrane were similar. These experiments provide direct evidence for homodimerization/oligomerization of class A GPCR in the ER and Golgi of intact living cells, and suggest that dimer/oligomer formation is a naturally occurring step in 5-HT2C receptor maturation and processing.
引用
收藏
页码:27109 / 27116
页数:8
相关论文
共 42 条
[1]   Detection of β2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET) [J].
Angers, S ;
Salahpour, A ;
Joly, E ;
Hilairet, S ;
Chelsky, D ;
Dennis, M ;
Bouvier, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (07) :3684-3689
[2]   Dimerization: An emerging concept for G protein-coupled receptor ontogeny and function [J].
Angers, S ;
Salahpour, A ;
Bouvier, M .
ANNUAL REVIEW OF PHARMACOLOGY AND TOXICOLOGY, 2002, 42 :409-435
[3]   Monitoring of ligand-independent dimerization and ligand-induced conformational changes of melatonin receptors in living cells by bioluminescence resonance energy transfer [J].
Ayoub, MA ;
Couturier, C ;
Lucas-Meunier, E ;
Angers, S ;
Fossier, P ;
Bouvier, M ;
Jockers, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (24) :21522-21528
[4]   Ligand-independent dimerization of CXCR4, a principal HIV-1 coreceptor [J].
Babcock, GJ ;
Farzan, M ;
Sodroski, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (05) :3378-3385
[5]   Structure-based analysis of GPCR function:: Evidence for a novel pentameric assembly between the dimeric leukotriene B4 receptor BLT1 and the G-protein [J].
Banères, JL ;
Parello, J .
JOURNAL OF MOLECULAR BIOLOGY, 2003, 329 (04) :815-829
[6]   Imaging the intracellular trafficking and state of the AB(5) quaternary structure of cholera toxin [J].
Bastiaens, PIH ;
Majoul, IV ;
Verveer, PJ ;
Soling, HD ;
Jovin, TM .
EMBO JOURNAL, 1996, 15 (16) :4246-4253
[7]   Mechanism of transdominant inhibition of CCR5-mediated HIV-1 infection by ccr5Δ32 [J].
Benkirane, M ;
Jin, DY ;
Chun, RF ;
Koup, RA ;
Jeang, KT .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (49) :30603-30606
[8]   Gonadotropin-releasing hormone receptor microaggregation -: Rate monitored by fluorescence resonance energy transfer [J].
Cornea, A ;
Janovick, DA ;
Maya-Núñez, G ;
Conn, PM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (03) :2153-2158
[9]   Homodimerization of neuropeptide y receptors investigated by fluorescence resonance energy transfer in living cells [J].
Dinger, MC ;
Bader, JE ;
Kóbor, AD ;
Kretzschmar, AK ;
Beck-Sickinger, AG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (12) :10562-10571
[10]   The G protein-coupled receptor rhodopsin in the native membrane [J].
Fotiadis, D ;
Liang, Y ;
Filipek, S ;
Saperstein, DA ;
Engel, A ;
Palczewski, K .
FEBS LETTERS, 2004, 564 (03) :281-288