ALD Protection of Li-Metal Anode Surfaces - Quantifying and Preventing Chemical and Electrochemical Corrosion in Organic Solvent

被引:59
作者
Lin, Chuan-Fu [1 ,2 ]
Kozen, Alexander C. [1 ,2 ]
Noked, Malachi [2 ,3 ]
Liu, Chanyuan [1 ,2 ]
Rubloff, Gary W. [1 ,2 ]
机构
[1] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA
[2] Univ Maryland, Syst Res Inst, College Pk, MD 20742 USA
[3] Univ Maryland, Dept Chem, College Pk, MD 20742 USA
关键词
ATOMIC LAYER DEPOSITION; LITHIUM METAL; ION BATTERY; OXYNITRIDE; OXIDE;
D O I
10.1002/admi.201600426
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Chemical and electrochemical instability of the Li metal interface with organic solvent has been a major impediment to use of Li-metal anodes for next-generation batteries. Here the character of Li surface degradation and the application of atomic layer deposition (ALD) as a protection layer to suppress the degradation are addressed. Using standard Li foil samples in organic solvent with and without in situ deposited ALD Al2O3 protective layers, results from in situ atomic force microscopy, mass spectrometry (including differential electrochemical mass spectrometry), X-ray Photoelectron Spectroscopy (XPS), and ex situ scanning electron microscopy/energy dispersive X-ray spectroscopy are reported. Despite the presence of a thin oxide/hydroxide/carbonate layer on the Li foil surface, degradation readily occurs in organic solvent, particularly at surface features such as ridges. Introduction of the ALD protective layer - deposited directly on this Li foil surface - dramatically suppresses the degradation.
引用
收藏
页数:7
相关论文
共 33 条
[1]   A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions [J].
Aurbach, D ;
Zinigrad, E ;
Cohen, Y ;
Teller, H .
SOLID STATE IONICS, 2002, 148 (3-4) :405-416
[2]   Differential Electrochemical Mass Spectrometry Study of the Interface of xLi2MnO3•(1-x)LiMO2 (M = Ni, Co, and Mn) Material as a Positive Electrode in Li-Ion Batteries [J].
Castel, Elias ;
Berg, Erik J. ;
El Kazzi, Mario ;
Novak, Petr ;
Villevieille, Claire .
CHEMISTRY OF MATERIALS, 2014, 26 (17) :5051-5057
[3]   Cycling characteristics of lithium metal batteries assembled with a surface modified lithium electrode [J].
Choi, Sung Min ;
Kang, Ik Su ;
Sun, Yang-Kook ;
Song, Jung-Hoon ;
Chung, Seok-Mo ;
Kim, Dong-Won .
JOURNAL OF POWER SOURCES, 2013, 244 :363-368
[4]   Lithium phosphorous oxynitride as a passive layer for anodes in lithium secondary batteries [J].
Chung, K ;
Kim, WS ;
Choi, YK .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2004, 566 (02) :263-267
[5]   Micromorphological studies of lithium electrodes in alkyl carbonate solutions using in situ atomic force microscopy [J].
Cohen, YS ;
Cohen, Y ;
Aurbach, D .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (51) :12282-12291
[6]   PERFORMANCES AND SAFETY BEHAVIOR OF RECHARGEABLE AA-SIZE LI/LIXMNO2 CELL(R) [J].
DAN, P ;
MENGERITSKI, E ;
GERONOV, Y ;
AURBACH, D ;
WEISMAN, I .
JOURNAL OF POWER SOURCES, 1995, 54 (01) :143-145
[7]   Addition of a thin-film inorganic solid electrolyte (Lipon) as a protective film in lithium batteries with a liquid electrolyte [J].
Dudney, NJ .
JOURNAL OF POWER SOURCES, 2000, 89 (02) :176-179
[8]   Challenges for Rechargeable Li Batteries [J].
Goodenough, John B. ;
Kim, Youngsik .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :587-603
[9]   UV-driven microvalve based on a micro-nano TiO2/SiO2 composite surface for microscale flow control [J].
Guo, Ting ;
Meng, Tao ;
Li, Wei ;
Qin, Jilong ;
Tong, Zhiping ;
Zhang, Qing ;
Li, Xueru .
NANOTECHNOLOGY, 2014, 25 (12)
[10]   Reactivation of dissolved polysulfides in Li-S batteries based on atomic layer deposition of Al2O3 in nanoporous carbon cloth [J].
Han, Xiaogang ;
Xu, Yunhua ;
Chen, Xinyi ;
Chen, Yu-Chen ;
Weadock, Nicholas ;
Wan, Jiayu ;
Zhu, Hongli ;
Liu, Yonglin ;
Li, Heqin ;
Rubloff, Gary ;
Wang, Chunsheng ;
Hu, Liangbing .
NANO ENERGY, 2013, 2 (06) :1197-1206