A Characterization of Absolute Continuity by means of Mellin Integral Operators

被引:13
作者
Angeloni, Laura [1 ]
Vinti, Gianluca [1 ]
机构
[1] Univ Perugia, Dipartimento Matemat & Informat, I-06123 Perugia, Italy
来源
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN | 2015年 / 34卷 / 03期
关键词
Mellin integral operators; absolute continuity; multidimensional variation; convergence in variation; DILATIONALLY INVARIANT TRANSFORMS; EXPONENTIAL-SAMPLING METHOD; CONVERGENCE; APPROXIMATION; RESPECT; LAPLACE;
D O I
10.4171/ZAA/1543
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the case of classical convolution operators, an important characterization of absolute continuity is given in terms of convergence in variation. In this paper we will study this problem for Mellin integral operators, proving analogous characterizations in the frame of the classical BV-spaces, both in the one-dimensional and in the multidimensional setting.
引用
收藏
页码:343 / 356
页数:14
相关论文
共 32 条
[1]  
Angeloni L, 2011, B UNIONE MAT ITAL 9, V4, P79
[2]  
Angeloni L., 2013, Commun. Appl. Nonlinear Anal, V20, P1
[3]  
Angeloni L., 2014, NEW PERSPECTIVES APP, P299
[4]   Convergence in variation and a characterization of the absolute continuity [J].
Angeloni, Laura ;
Vinti, Gianluca .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2015, 26 (10) :829-844
[5]   Convergence and rate of approximation in BVφ (R+N) for a class of Mellin integral operators [J].
Angeloni, Laura ;
Vinti, Gianluca .
RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2014, 25 (03) :217-232
[6]  
Angeloni L, 2013, DIFFER INTEGRAL EQU, V26, P655
[7]   Approximation Results with Respect to Multidimensional φ-Variation for Nonlinear Integral Operators [J].
Angeloni, Laura .
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2013, 32 (01) :103-128
[8]   Approximation with Respect to Goffman-Serrin Variation by Means of Non-Convolution Type Integral Operators [J].
Angeloni, Laura ;
Vinti, Gianluca .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2010, 31 (05) :519-548
[9]  
Angeloni L, 2010, DIFFER INTEGRAL EQU, V23, P795
[10]   Convergence and rate of approximation for linear integral operators in BVφ-spaces in multidimensional setting [J].
Angeloni, Laura ;
Vinti, Gianluca .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 349 (02) :317-334