The nef cone of the moduli space of sheaves and strong Bogomolov inequalities

被引:9
作者
Coskun, Izzet [1 ]
Huizenga, Jack [2 ]
机构
[1] Univ Illinois, Dept Math Stat & CS, Chicago, IL 60607 USA
[2] Penn State Univ, Dept Math, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
STABILITY CONDITIONS; BIRATIONAL GEOMETRY; BRIDGELAND STABILITY; PROJECTIVE SURFACES; VECTOR-BUNDLES; PLANE; SCHEMES; POINTS; P-2;
D O I
10.1007/s11856-018-1687-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (X,H) be a polarized, smooth, complex projective surface, and let v be a Chern character on X with positive rank and sufficiently large discriminant. In this paper, we compute the Gieseker wall for v in a slice of the stability manifold of X. We construct explicit curves parameterizing nonisomorphic Gieseker stable sheaves of character v that become S-equivalent along the wall. As a corollary, we conclude that if there are no strictly semistable sheaves of character v, the Bayer-MacrAnotsign divisor associated to the wall is a boundary nef divisor on the moduli space of sheaves M (H) (v). We recover previous results for a"(TM)(2) and K3 surfaces, and illustrate applications to higher Picard rank surfaces with an example on a"(TM)(1) x a"(TM)(1).
引用
收藏
页码:205 / 236
页数:32
相关论文
共 36 条
[1]  
[Anonymous], 2010, GEOMETRY MODULI SPAC, DOI DOI 10.1017/CBO9780511711985
[2]   Bridgeland-stable moduli spaces for K-trivial surfaces [J].
Arcara, Daniele ;
Bertram, Aaron ;
Lieblich, Max .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2013, 15 (01) :1-38
[3]   The minimal model program for the Hilbert scheme of points on P2 and Bridgeland stability [J].
Arcara, Daniele ;
Bertram, Aaron ;
Coskun, Izzet ;
Huizenga, Jack .
ADVANCES IN MATHEMATICS, 2013, 235 :580-626
[4]   MMP for moduli of sheaves on K3s via wall-crossing: nef and movable cones, Lagrangian fibrations [J].
Bayer, Arend ;
Macri, Emanuele .
INVENTIONES MATHEMATICAE, 2014, 198 (03) :505-590
[5]   PROJECTIVITY AND BIRATIONAL GEOMETRY OF BRIDGELAND MODULI SPACES [J].
Bayer, Arend ;
Macri, Emanuele .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 27 (03) :707-752
[6]  
BERTRAM A., 2013, Birational geometry, rational curves, and arithmetic, P15
[7]  
Bertram A., ARXIV150507091V1
[8]   The birational geometry of moduli spaces of sheaves on the projective plane [J].
Bertram, Aaron ;
Martinez, Cristian ;
Wang, Jie .
GEOMETRIAE DEDICATA, 2014, 173 (01) :37-64
[9]   Nef cones of Hilbert schemes of points on surfaces [J].
Bolognese, Barbara ;
Huizenga, Jack ;
Lin, Yinbang ;
Riedl, Eric ;
Schmidt, Benjamin ;
Woolf, Matthew ;
Zhao, Xiaolei .
ALGEBRA & NUMBER THEORY, 2016, 10 (04) :907-930
[10]   Stability conditions on triangulated categories [J].
Bridgeland, Tom .
ANNALS OF MATHEMATICS, 2007, 166 (02) :317-345