A Study of Pure Random Walk Algorithms on Constraint Satisfaction Problems with Growing Domains

被引:0
作者
Xu, Wei [1 ]
Gong, Fuzhou [2 ]
机构
[1] Univ Sci & Technol Beijing, Sch Automat & Elect Engn, Beijing 100083, Peoples R China
[2] Chinese Acad Sci, Inst Appl Math, Acad Math & Syst Sci, Beijing, Peoples R China
来源
FRONTIERS IN ALGORITHMICS, FAW 2014 | 2014年 / 8497卷
关键词
constraint satisfaction problems; Model RB; random walk; local search algorithms; PHASE-TRANSITION; LOCAL SEARCH;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The performances of two types of pure random walk (PRW) algorithms for a model of constraint satisfaction problems with growing domains (called Model RB) are investigated. Threshold phenomenons appear for both algorithms. In particular, when the constraint density r is smaller than a threshold value r(d), PRW algorithms can solve instances of Model RB efficiently, but when r is bigger than the rd, they fail. Using a physical method, we find out the threshold values for both algorithms. When the number of variables N is large, the threshold values tend to zero, so generally speaking PRW does not work on Model RB.
引用
收藏
页码:276 / 287
页数:12
相关论文
共 32 条
  • [1] Achlioptas D, 1997, LECT NOTES COMPUT SC, V1330, P107, DOI 10.1007/BFb0017433
  • [2] Linear upper bounds for random walk on small density random 3-CNFs
    Alekhnovich, Mikhail
    Ben-Sasson, Eli
    [J]. SIAM JOURNAL ON COMPUTING, 2006, 36 (05) : 1248 - 1263
  • [3] Alphonse E, 2008, LECT NOTES ARTIF INT, V5194, P6, DOI 10.1007/978-3-540-85928-4_6
  • [4] BRODER AZ, 1993, PROCEEDINGS OF THE FOURTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P322
  • [5] PROBABILISTIC ANALYSIS OF 2 HEURISTICS FOR THE 3-SATISFIABILITY PROBLEM
    CHAO, MT
    FRANCO, J
    [J]. SIAM JOURNAL ON COMPUTING, 1986, 15 (04) : 1106 - 1118
  • [6] Cocco S., 2006, COMPUT COMPLEX, P63
  • [7] Coja-Oghlan A., 2012, P ANALCO, P48
  • [8] Coja-Oghlan A, 2009, PROCEEDINGS OF THE TWENTIETH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P451
  • [9] Preface
    Fan, Yuhong
    Fisher, George
    Leibacher, John
    [J]. SOLAR PHYSICS, 2012, 277 (01) : 1 - 2
  • [10] On the phase transitions of random k-constraint satisfaction problems
    Fan, Yun
    Shen, Jing
    [J]. ARTIFICIAL INTELLIGENCE, 2011, 175 (3-4) : 914 - 927