A Hybrid Method for Short-term Load Forecasting in Power System

被引:0
|
作者
Zhu, Xianghe [1 ]
Qi, Huan [1 ]
Huang, Xuncheng [2 ]
Sun, Suqin [2 ]
机构
[1] Huazhong Univ Sci & Technol, Wuchang Branch, Dept Basic Sci, Wuhan 430064, Peoples R China
[2] Elect Power HeNan, Zhengzhou 450052, Peoples R China
来源
PROCEEDINGS OF THE 10TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA 2012) | 2012年
关键词
hybrid method; ensemble empirical mode decomposition (EEMD); least square-support vector machine (LS-SVM); BP neural network; short-term load forecasting;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In order to improve the accuracy of power load forecasting, this paper proposes a hybrid model based on Ensemble Empirical Mode Decomposition (EEMD), least square-support vector machine (SVM) and BP nature network as a short-term load forecasting model. At first, the actual power load series is decomposed into different new series based on EEMD. Then the right parameters and kernel functions are chosen to build different LS-SVM model respectively, to forecast each intrinsic mode functions, due to the change regulation of each of all resulted intrinsic mode functions. Finally, we use the BP network to reconstruct the forecasted signals of the components and obtain the ultimate forecasting results. Simulation results show that the proposed forecasting method possesses accuracy.
引用
收藏
页码:696 / 699
页数:4
相关论文
共 50 条
  • [1] The Research of Power System Short-term Load Forecasting
    Yi, Jie
    PROCEEDINGS OF THE 2017 2ND INTERNATIONAL CONFERENCE ON MACHINERY, ELECTRONICS AND CONTROL SIMULATION (MECS 2017), 2017, 138 : 332 - 335
  • [2] Power system short-term load forecasting
    Wang, Jingyao
    PROCEEDINGS OF THE 2017 5TH INTERNATIONAL CONFERENCE ON MACHINERY, MATERIALS AND COMPUTING TECHNOLOGY (ICMMCT 2017), 2017, 126 : 250 - 253
  • [3] A hybrid fuzzy modeling method for short-term load forecasting
    Mastorocostas, PA
    Theocharis, JB
    Kiartzis, SJ
    Bakirtzis, AG
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2000, 51 (3-4) : 221 - 232
  • [4] Short-term Load forecasting by a new hybrid model
    Guo, Hehong
    Du, Guiqing
    Wu, Liping
    Hu, Zhiqiang
    PROCEEDINGS OF THE 1ST INTERNATIONAL WORKSHOP ON CLOUD COMPUTING AND INFORMATION SECURITY (CCIS 2013), 2013, 52 : 370 - 374
  • [5] Holographic Ensemble Forecasting Method for Short-Term Power Load
    Zhou, Mo
    Jin, Min
    IEEE TRANSACTIONS ON SMART GRID, 2019, 10 (01) : 425 - 434
  • [6] An Artificial Intelligent Method of Power Load Forecasting in Short-term
    Zhang, Qinghu
    Song, Wei
    Zhang, Dai
    Qiu, Jianlin
    Hu, Zhaopeng
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 7136 - 7140
  • [7] Fusion Forecasting Algorithm for Short-Term Load in Power System
    Yu, Tao
    Wang, Ye
    Zhao, Yuchong
    Luo, Gang
    Yue, Shihong
    ENERGIES, 2024, 17 (20)
  • [8] Power System Short-Term Load Forecasting Based on Multiple Proportions Smoothing Method
    Tang, Ye
    PROCEEDINGS OF THE 2017 2ND INTERNATIONAL CONFERENCE ON ELECTRICAL, CONTROL AND AUTOMATION ENGINEERING (ECAE 2017), 2017, 140 : 77 - 78
  • [9] A hybrid economic indices based short-term load forecasting system
    Lin, Cheng-Ting
    Chou, Li-Der
    Chen, Yi-Ming
    Tseng, Li-Ming
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2014, 54 : 293 - 305
  • [10] HYBRID ARTIFICIAL NEURAL NETWORK SYSTEM FOR SHORT-TERM LOAD FORECASTING
    Ilic, Slobodan A.
    Vukmirovic, Srdjan M.
    Erdeljan, Aleksandar M.
    Kulic, Filip J.
    THERMAL SCIENCE, 2012, 16 : S215 - S224