Tight Integrality Gaps for Lovasz-Schrijver LP Relaxations of Vertex Cover and Max Cut

被引:39
作者
Schoenebeck, Grant [1 ]
Trevisan, Luca [1 ]
Tulsiani, Madhur [1 ]
机构
[1] Univ Calif Berkeley, Div Comp Sci, Berkeley, CA 94720 USA
来源
STOC 07: PROCEEDINGS OF THE 39TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING | 2007年
关键词
Linear Programming; Approximation Algorithms; Integrality Cap; Lovasz-Schrijver hierarchy;
D O I
10.1145/1250790.1250836
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study linear programming relaxations of Vertex Cover and Max Cut arising from repeated applications of the "lift-and-project" method of Lovasz and Schrijver starting from the standard linear programming relaxation. For Vertex Cover, Arora, Bollobas, Lovasz and Tourlakis prove that the integrality gap remains at least 2 - epsilon after Omega(epsilon)(log n) rounds, where n is the number of vertices, and Tourlakis proves that integrality gap remains at least 1.5 - epsilon after Omega((log n)(2)) rounds. Fernandez de la Vega and Kenyon prove that the integrality gap of Max Cut is at most 1/2 + epsilon after any constant number of rounds. (Their result also applies to the more powerful Sherali-Adams method.) We prove that the integrality gap of Vertex Cover remains at least 2 - epsilon after Omega(epsilon) (n) rounds, and that the integrality gap of Max Cut remains at most 1/2 + epsilon after Omega(epsilon)(n) rounds.
引用
收藏
页码:302 / 310
页数:9
相关论文
共 10 条
[1]  
Arora S, 2002, ANN IEEE SYMP FOUND, P313, DOI 10.1109/SFCS.2002.1181954
[2]  
ARORA S, 2006, THEORY COMPUTING, V2, P19
[3]   On the hardness of approximating minimum vertex cover [J].
Dinur, I ;
Safra, S .
ANNALS OF MATHEMATICS, 2005, 162 (01) :439-485
[4]  
FERNANDEZ W, 2007, P 17 ACM SI IN PRESS
[5]   Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming [J].
Goemans, MX ;
Williamson, DP .
JOURNAL OF THE ACM, 1995, 42 (06) :1115-1145
[6]  
KHOT S, 2003, P 18 IEEE C COMP COM
[7]   CONES OF MATRICES AND SET-FUNCTIONS AND 0-1 OPTIMIZATION [J].
Lovasz, L. ;
Schrijver, A. .
SIAM JOURNAL ON OPTIMIZATION, 1991, 1 (02) :166-190
[8]  
SCHOENEBECK G, 2006, EL COLL COMP COMPL
[9]   A HIERARCHY OF RELAXATIONS BETWEEN THE CONTINUOUS AND CONVEX-HULL REPRESENTATIONS FOR ZERO-ONE PROGRAMMING-PROBLEMS [J].
SHERALI, HD ;
ADAMS, WP .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1990, 3 (03) :411-430
[10]  
TOURLAKIS I, 2006, P 21 IEEE C COMP COM