COLLISIONAL STRIPPING AND DISRUPTION OF SUPER-EARTHS

被引:103
作者
Marcus, Robert A. [1 ]
Stewart, Sarah T. [2 ]
Sasselov, Dimitar [1 ]
Hernquist, Lars [1 ]
机构
[1] Harvard Univ, Dept Astron, Cambridge, MA 02138 USA
[2] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA
关键词
planetary systems: formation; planets and satellites: formation; SMOOTHED PARTICLE HYDRODYNAMICS; TERRESTRIAL PLANET FORMATION; IMPACT; PLANETESIMALS; SIMULATIONS; ORIGIN; HYPOTHESIS; ACCRETION; EVOLUTION; ASTEROIDS;
D O I
10.1088/0004-637X/700/2/L118
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The final stage of planet formation is dominated by collisions between planetary embryos. The dynamics of this stage determine the orbital configuration and the mass and composition of planets in the system. In the solar system, late giant impacts have been proposed for Mercury, Earth, Mars, and Pluto. In the case of Mercury, this giant impact may have significantly altered the bulk composition of the planet. Here we present the results of smoothed particle hydrodynamics simulations of high-velocity (up to similar to 5 nu(esc)) collisions between 1 and 10 M(circle plus) planets of initially terrestrial composition to investigate the end stages of formation of extrasolar super-Earths. As found in previous simulations of collisions between smaller bodies, when collision energies exceed simple merging, giant impacts are divided into two regimes: (1) disruption and (2) hit-and-run (a grazing inelastic collision and projectile escape). Disruption occurs when the impact parameter is near zero, when the projectile mass is small compared to the target, or at extremely high velocities. In the disruption regime, we derive the criteria for catastrophic disruption (when half the total colliding mass is lost), the transition energy between accretion and erosion, and a scaling law for the change in bulk composition (iron-to-silicate ratio) resulting from collisional stripping of a mantle.
引用
收藏
页码:L118 / L122
页数:5
相关论文
共 45 条
[1]   Accretion efficiency during planetary collisions [J].
Agnor, C ;
Asphaug, E .
ASTROPHYSICAL JOURNAL, 2004, 613 (02) :L157-L160
[2]   On the character and consequences of large impacts in the late stage of terrestrial planet formation [J].
Agnor, CB ;
Canup, RM ;
Levison, HF .
ICARUS, 1999, 142 (01) :219-237
[3]  
[Anonymous], 1989, OXFORD MONOGRAPHS GE
[4]   Hit-and-run planetary collisions [J].
Asphaug, E ;
Agnor, CB ;
Williams, Q .
NATURE, 2006, 439 (7073) :155-160
[5]   Growth and Evolution of Asteroids [J].
Asphaug, Erik .
ANNUAL REVIEW OF EARTH AND PLANETARY SCIENCES, 2009, 37 :413-448
[6]   The origin of mercury [J].
Benz, W. ;
Anic, A. ;
Horner, J. ;
Whitby, J. A. .
SPACE SCIENCE REVIEWS, 2007, 132 (2-4) :189-202
[7]   Catastrophic disruptions revisited [J].
Benz, W ;
Asphaug, E .
ICARUS, 1999, 142 (01) :5-20
[8]   THE ORIGIN OF THE MOON AND THE SINGLE-IMPACT HYPOTHESIS .1. [J].
BENZ, W ;
SLATTERY, WL ;
CAMERON, AGW .
ICARUS, 1986, 66 (03) :515-535
[9]   Low velocity collisions and the growth of planetesimals [J].
Benz, W .
SPACE SCIENCE REVIEWS, 2000, 92 (1-2) :279-294
[10]   COLLISIONAL STRIPPING OF MERCURYS MANTLE [J].
BENZ, W ;
SLATTERY, WL ;
CAMERON, AGW .
ICARUS, 1988, 74 (03) :516-528