Local Steiner convexity

被引:8
作者
Henning, Michael A. [1 ]
Nielsen, Morten H. [2 ]
Ciellermann, Ortrud R. [2 ]
机构
[1] Univ KwaZulu Natal, Sch Math Sci, ZA-3209 Pietermaritzburg, South Africa
[2] Univ Winnipeg, Dept Math & Stat, Winnipeg, MB R3B 2E9, Canada
基金
新加坡国家研究基金会; 加拿大自然科学与工程研究理事会;
关键词
GRAPHS; INTERVALS;
D O I
10.1016/j.ejc.2008.09.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a connected graph and let S be a set of vertices in G. The Steiner distance d(S) of S is the minimum size of a subtree of G Containing S. Such a subtree of size d(S) is a Steiner tree for S. The set S is g-convex if it contains the set of all vertices that lie on some shortest u-v path in G for every pair u and v of vertices in S. The set S is k-Steiner convex, denoted by g(k)-convex, if for every k-element subset R of S, every vertex that belongs to some Steiner tree for R is also in S. Thus, S is g(2)-convex if and only if it is g-convex. In this paper, We distinguish three local convexity notions for g(1)-convexity and we characterize the graphs for which two of these conditions hold. For the third condition we determine some necessary conditions and some sufficient conditions for the graph class satisfying this condition. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1186 / 1193
页数:8
相关论文
共 9 条
[1]   On 3-Steiner simplicial orderings [J].
Caceres, Jose ;
Oellermann, Ortrud R. .
DISCRETE MATHEMATICS, 2009, 309 (19) :5828-5833
[2]  
Chartrand Gary., 1989, asopis P st. Mat, V114, P399
[3]   Convexity and HHD-free graphs [J].
Dragan, FF ;
Nicolai, F ;
Brandstädt, A .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1999, 12 (01) :119-135
[4]   ON LOCAL CONVEXITY IN GRAPHS [J].
FARBER, M ;
JAMISON, RE .
DISCRETE MATHEMATICS, 1987, 66 (03) :231-247
[5]   CONVEXITY IN GRAPHS AND HYPERGRAPHS [J].
FARBER, M ;
JAMISON, RE .
SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1986, 7 (03) :433-444
[6]   Steiner intervals in graphs [J].
Kubicka, E ;
Kubicki, G ;
Oellermann, OR .
DISCRETE APPLIED MATHEMATICS, 1998, 81 (1-3) :181-190
[7]  
NIELSEN M, STEINER TREES UNPUB
[8]   Steiner intervals and Steiner geodetic numbers in distance-hereditary graphs [J].
Oellermann, Ortrud R. ;
Puertas, Maria Luz .
DISCRETE MATHEMATICS, 2007, 307 (01) :88-96
[9]  
van de Vel M.L.J., 1993, Theory of Convex Structures