On the Classical Solutions for the Kuramoto-Sivashinsky Equation with Ehrilch-Schwoebel Effects

被引:5
作者
Coclite, Giuseppe Maria [1 ]
Di Ruvo, Lorenzo [2 ]
机构
[1] Polytech Univ Bari, Dept Mech Math & Management, Via E Orabona 4, I-70125 Bari, Italy
[2] Univ Bari, Dept Math, Via E Orabona 4, I-70125 Bari, Italy
来源
CONTEMPORARY MATHEMATICS | 2022年 / 3卷 / 04期
关键词
existence; uniqueness; stability; the Kuramoto-Sivashinsky equation with Ehrilch-Schwoebel effects; Cauchy problem; MOLECULAR-BEAM EPITAXY; NONLINEAR SATURATION; SLOPE SELECTION; CRYSTAL-GROWTH; INSTABILITY; DIFFUSION; WAVES; STABILITY; MODELS; STABILIZATION;
D O I
10.37256/cm.3420221607
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Kuramoto-Sivashinsky equation with Ehrilch-Schwoebel effects models the evolution of surface morphology during Molecular Beam Epitaxy growth, provoked by an interplay between deposition of atoms onto the surface and the relaxation of the surface profile through surface diffusion. It consists of a nonlinear fourth order partial differential equation. Using energy methods we prove the well-posedness (i.e.. existence, uniqueness and stability with respect to the initial data) of the classical solutions for the Cauchy problem, associated with this equation.
引用
收藏
页码:386 / 431
页数:46
相关论文
共 68 条
  • [1] Feedback control of the Kuramoto-Sivashinsky equation
    Armaou, A
    Christofides, PD
    [J]. PHYSICA D, 2000, 137 (1-2): : 49 - 61
  • [2] MORPHOLOGICAL INSTABILITY OF A TERRACE EDGE DURING STEP-FLOW GROWTH
    BALES, GS
    ZANGWILL, A
    [J]. PHYSICAL REVIEW B, 1990, 41 (09): : 5500 - 5508
  • [3] LONG WAVES ON LIQUID FILMS
    BENNEY, DJ
    [J]. JOURNAL OF MATHEMATICS AND PHYSICS, 1966, 45 (02): : 150 - &
  • [4] Controlled Self-Assembly of Nanocrystalline Arrays Studied by 3D Kinetic Monte Carlo Modeling
    Bhuiyan, Abuhanif K.
    Dew, Steven K.
    Stepanova, Maria
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (40) : 19557 - 19568
  • [5] Universality classes for unstable crystal growth
    Biagi, Sofia
    Misbah, Chaouqi
    Politi, Paolo
    [J]. PHYSICAL REVIEW E, 2014, 89 (06):
  • [6] Instabilities in certain one-dimensional singular interfacial equation
    Bognar, Gabriella
    Guedda, Mohammed
    Hriczo, Krisztian
    Taourirte, Laila
    [J]. PHYSICA SCRIPTA, 2020, 95 (03)
  • [7] NULL CONTROLLABILITY AND STABILIZATION OF THE LINEAR KURAMOTO-SIVASHINSKY EQUATION
    Cerpa, Eduardo
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2010, 9 (01) : 91 - 102
  • [8] NONLINEAR-WAVES ON LIQUID-FILM SURFACES .2. BIFURCATION ANALYSES OF THE LONG-WAVE EQUATION
    CHEN, LH
    CHANG, HC
    [J]. CHEMICAL ENGINEERING SCIENCE, 1986, 41 (10) : 2477 - 2486
  • [9] Global stabilization of the Kuramoto-Sivashinsky equation via distributed output feedback control
    Christofides, PD
    Armaou, A
    [J]. SYSTEMS & CONTROL LETTERS, 2000, 39 (04) : 283 - 294
  • [10] ON THE SOLUTIONS FOR A BENNEY-LIN TYPE EQUATION
    Coclite, Giuseppe Maria
    di Ruvo, Lorenzo
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (11): : 6865 - 6883