Domain and range of the modified wave operator for Schrodinger equations with a critical nonlinearity

被引:36
作者
Hayashi, Nakao [1 ]
Naumkin, Pavel I.
机构
[1] Osaka Univ, Grad Sch Sci, Dept Math, Toyonaka, Osaka 5600043, Japan
[2] Univ Nacl Autonoma Mexico, Inst Matemat, Morelia 58089, Michoacan, Mexico
关键词
D O I
10.1007/s00220-006-0057-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the final problem for the nonlinear Schrodinger equation i partial derivative(t)u+1/2 Delta u = lambda\u\(2/n)u, (t, x) is an element of R x R(n), where lambda is an element of R, n = 1, 2, 3. If the final data u(+) is an element of H(0,alpha) = {phi is an element of L(2) : (1 + \x\)(alpha) phi is an element of L(2)} with n/2 < alpha < min (n, 2, 1 + 2/n) and the norm parallel to(u(+)) over cap parallel to(L)infinity is sufficiently small, then we prove the existence of the wave operator in L(2). We also construct the modified scattering operator from H(0,alpha) to H(0,delta) with n/2 < delta < alpha.
引用
收藏
页码:477 / 492
页数:16
相关论文
共 12 条
[1]  
BATEMAN H, 1954, TABLES INTEGRAL TRAN, P343
[2]  
Bergh J., 1976, Interpolation Spaces, DOI [10.1007/978-3-642-66451-9, DOI 10.1007/978-3-642-66451-9]
[3]   Geometric optics and long range scattering for one dimensional nonlinear Schrodinger equations [J].
Carles, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 220 (01) :41-67
[4]  
Friedman A., 1969, PARTIAL DIFFERENTIAL
[5]   LONG-RANGE SCATTERING FOR NONLINEAR SCHRODINGER AND HARTREE-EQUATIONS IN SPACE DIMENSION N-GREATER-THAN-OR-EQUAL-TO-2 [J].
GINIBRE, J ;
OZAWA, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 151 (03) :619-645
[6]  
GINIBRE J, 1994, ANN I H POINCARE-PHY, V60, P211
[7]  
HAYASHI N, 1987, LECT NOTES MATH, V1285, P162
[8]   Asymptotics for large time of solutions to the nonlinear Schrodinger and Hartree equations [J].
Hayashi, N ;
Naumkin, PI .
AMERICAN JOURNAL OF MATHEMATICS, 1998, 120 (02) :369-389
[9]   LONG-RANGE SCATTERING FOR NONLINEAR SCHRODINGER-EQUATIONS IN ONE SPACE DIMENSION [J].
OZAWA, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 139 (03) :479-493
[10]  
Shimomura A, 2004, DIFFER INTEGRAL EQU, V17, P127