Mean dimension and an embedding problem: An example

被引:39
作者
Lindenstrauss, Elon [1 ]
Tsukamoto, Masaki [2 ]
机构
[1] Hebrew Univ Jerusalem, Einstein Inst Math, IL-91904 Jerusalem, Israel
[2] Kyoto Univ, Dept Math, Kyoto 6068502, Japan
关键词
Simplicial Complex; Periodic Point; Graph Distance; Embedding Problem; Shift Transformation;
D O I
10.1007/s11856-013-0040-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any positive integer D, we construct a minimal dynamical system with mean dimension equal to D/2 that cannot be embedded into (([0, 1] (D) )(Z), shift).
引用
收藏
页码:573 / 584
页数:12
相关论文
共 11 条
[1]  
[Anonymous], 1988, N HOLLAND MATH STUDI
[2]  
[Anonymous], 1941, PRINCETON MATH SERIE
[3]  
Coornaert M, 2005, DISCRETE CONT DYN S, V13, P779
[4]   Topological invariants of dynamical systems and spaces of holomorphic maps: I [J].
Gromov M. .
Mathematical Physics, Analysis and Geometry, 1999, 2 (4) :323-415
[5]   Embedding Zk-actions in cubical shifts and Zk-symbolic extensions [J].
Gutman, Yonatan .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2011, 31 :383-403
[6]  
Jaworski A., 1974, The Kakutani-Beboutov Theorem for Groups
[7]   Mean topological dimension [J].
Lindenstrauss, E ;
Weiss, B .
ISRAEL JOURNAL OF MATHEMATICS, 2000, 115 (1) :1-24
[8]  
Lindenstrauss E, 1999, PUBL MATH, P227
[9]  
Matousek J, 2008, Lectures on Topological Methods in Combinatorics and Geometry
[10]  
Skopenkov A., 2008, SURVEYS CONT MATH, V347, P248