Lidar Detection of Explosive Vapors in the Atmosphere

被引:18
作者
Bobrovnikov, S. M. [1 ,2 ]
Vorozhtsov, A. B. [1 ,3 ]
Gorlov, E. V. [1 ,2 ]
Zharkov, V. I. [2 ]
Maksimov, E. M. [4 ]
Panchenko, Yu. N. [5 ]
Sakovich, G. V. [3 ]
机构
[1] Natl Res Tomsk State Univ, Tomsk, Russia
[2] Russian Acad Sci, VE Zuev Inst Atmospher Opt, Siberian Branch, Tomsk, Russia
[3] Russian Acad Sci, Inst Problems Chem & Energet Technol, Siberian Branch, Biisk, Russia
[4] Moscow Inst Phys & Technol, Moscow, Russia
[5] Russian Acad Sci, Inst High Current Elect, Siberian Branch, Tomsk 634055, Russia
关键词
explosives; laser fragmentation; laser-induced fluorescence; lidar; LASER-INDUCED FLUORESCENCE; REMOTE DETECTION; UNIQUE SCHEME; PRESSURE;
D O I
10.1007/s11182-016-0635-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The paper presents results of studying the feasibility of remote detection of explosive vapors in the atmosphere based on the lidar principle using the method of laser fragmentation/laser-induced fluorescence. A project of the mobile, automated, fast-response scanning UV lidar for explosives detection at distances of 10-50 m is presented. Experimental data on the detection of trinitrotoluene (TNT), hexogen (RDX), and Composition B (CompB) vapors at a distance of 13 m are given. The threshold sensitivity of the lidar detector of explosive vapors is estimated. For TNT vapors, the threshold sensitivity of the lidar detector is estimated to be 1a (TM) 10(-12) g/cm(-3) for the detection probability P = 97%.
引用
收藏
页码:1217 / 1225
页数:9
相关论文
共 10 条
  • [1] Photodissociation followed by laser-induced fluorescence at atmospheric pressure and 24 °C:: a unique scheme for remote detection of explosives
    Arusi-Parpar, T
    Heflinger, D
    Lavi, R
    [J]. APPLIED OPTICS, 2001, 40 (36) : 6677 - 6681
  • [2] Bradshaw J. D., 1985, J GEOPHYS RES D, V90
  • [3] Nitrobenzene detection by one-color laser-photolysis/laser-induced fluorescence of NO (ν" = 0-3)
    Daugey, N
    Shu, J
    Bar, I
    Rosenwaks, S
    [J]. APPLIED SPECTROSCOPY, 1999, 53 (01) : 57 - 64
  • [4] Dionne B.C., 1986, Journal of Energetic Materials, V4, P447, DOI DOI 10.1080/07370658608011353
  • [5] Application of a unique scheme for remote detection of explosives
    Heflinger, D
    Arusi-Parpar, T
    Ron, Y
    Lavi, R
    [J]. OPTICS COMMUNICATIONS, 2002, 204 (1-6) : 327 - 331
  • [6] MONITORING OF VAPOR-PHASE NITRO-COMPOUNDS USING 226-NM RADIATION - FRAGMENTATION WITH SUBSEQUENT NO RESONANCE-ENHANCED MULTIPHOTON IONIZATION DETECTION
    LEMIRE, GW
    SIMEONSSON, JB
    SAUSA, RC
    [J]. ANALYTICAL CHEMISTRY, 1993, 65 (05) : 529 - 533
  • [7] Vapor Pressure of Explosives: A Critical Review
    Ostmark, Henric
    Wallin, Sara
    Ang, How Ghee
    [J]. PROPELLANTS EXPLOSIVES PYROTECHNICS, 2012, 37 (01) : 12 - 23
  • [8] Narrow-band tunable laser system for a lidar facility
    Panchenko, Yu. N.
    Andreev, M. V.
    Bobrovnikov, S. M.
    Gorlov, E. V.
    Dudarev, V. V.
    Ivanov, N. G.
    Losev, V. F.
    Pavlinskii, A. V.
    Puchikin, A. V.
    Zharkov, V. I.
    [J]. RUSSIAN PHYSICS JOURNAL, 2012, 55 (06) : 609 - 615
  • [9] Sandholm S. T., 1990, J GEOPHYS RES D, V95D
  • [10] 2,4,6-trinitrotoluene detection by laser-photofragmentation-laser-induced fluorescence
    Wu, DD
    Singh, JP
    Yueh, FY
    Monts, DL
    [J]. APPLIED OPTICS, 1996, 35 (21): : 3998 - 4003