THE TOPOLOGY OF TORIC ORIGAMI MANIFOLDS

被引:11
|
作者
Holm, Tara S. [1 ]
Pires, Ana Rita [1 ]
机构
[1] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
EQUIVARIANT COHOMOLOGY;
D O I
10.4310/MRL.2013.v20.n5.a6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A folded symplectic form on a manifold is a closed 2-form with the mildest possible degeneracy along a hypersurface. A special class of folded symplectic manifolds are the origami symplectic manifolds, studied by Cannas da Silva, Guillemin and Pires, who classified toric origami manifolds by combinatorial origami templates. In this paper, we examine the topology of toric origami manifolds that have acyclic origami template and coorientable folding hypersurface. We prove that the cohomology is concentrated in even degrees, and that the equivariant cohomology satisfies the Goresky, Kottwitz and MacPherson description. Finally, we show that toric origami manifolds with coorientable folding hypersurface provide a class of examples of Masuda and Panov's torus manifolds.
引用
收藏
页码:885 / 906
页数:22
相关论文
共 50 条
  • [41] Homotopy theory in toric topology
    Grbic, J.
    Theriault, S.
    RUSSIAN MATHEMATICAL SURVEYS, 2016, 71 (02) : 185 - 251
  • [42] Bier Spheres and Toric Topology
    Limonchenko, Ivan Yu.
    Sergeev, Matvey A.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2024, 326 (01) : 252 - 268
  • [43] FULLERENES, POLYTOPES AND TORIC TOPOLOGY
    Buchstaber, Victor M.
    Erokhovets, Nikolay Yu.
    COMBINATORIAL AND TORIC HOMOTOPY: INTRODUCTORY LECTURES, 2018, 35 : 67 - 178
  • [44] Categorical aspects of toric topology
    Panov, Taras E.
    Ray, Nigel
    TORIC TOPOLOGY, 2008, 460 : 293 - 322
  • [45] Topology of toric gravitational instantons
    Nilsson, Gustav
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2024, 96
  • [46] Origami Design by Topology Optimization
    Fuchi, Kazuko
    Diaz, Alejandro R.
    JOURNAL OF MECHANICAL DESIGN, 2013, 135 (11)
  • [47] Topology and Geometry of Spin Origami
    Roychowdhury, Krishanu
    Rocklin, D. Zeb
    Lawler, Michael J.
    PHYSICAL REVIEW LETTERS, 2018, 121 (17)
  • [48] K-stability on toric manifolds
    Zhou, Bin
    Zhu, Xiaohua
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (09) : 3301 - 3307
  • [49] The canonical spectrum of projective toric manifolds
    Hajli, Mounir
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2018, 29 (07)
  • [50] Instantons, monopoles and toric hyperKahler manifolds
    Kraan, TC
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 212 (03) : 503 - 533