THE TOPOLOGY OF TORIC ORIGAMI MANIFOLDS

被引:11
|
作者
Holm, Tara S. [1 ]
Pires, Ana Rita [1 ]
机构
[1] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
EQUIVARIANT COHOMOLOGY;
D O I
10.4310/MRL.2013.v20.n5.a6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A folded symplectic form on a manifold is a closed 2-form with the mildest possible degeneracy along a hypersurface. A special class of folded symplectic manifolds are the origami symplectic manifolds, studied by Cannas da Silva, Guillemin and Pires, who classified toric origami manifolds by combinatorial origami templates. In this paper, we examine the topology of toric origami manifolds that have acyclic origami template and coorientable folding hypersurface. We prove that the cohomology is concentrated in even degrees, and that the equivariant cohomology satisfies the Goresky, Kottwitz and MacPherson description. Finally, we show that toric origami manifolds with coorientable folding hypersurface provide a class of examples of Masuda and Panov's torus manifolds.
引用
收藏
页码:885 / 906
页数:22
相关论文
共 50 条
  • [31] The α-invariant on toric Fano manifolds
    Song, J
    AMERICAN JOURNAL OF MATHEMATICS, 2005, 127 (06) : 1247 - 1259
  • [32] Moduli spaces of toric manifolds
    Pelayo, A.
    Pires, A. R.
    Ratiu, T. S.
    Sabatini, S.
    GEOMETRIAE DEDICATA, 2014, 169 (01) : 323 - 341
  • [33] Variation of toric hyperKahler manifolds
    Konno, H
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2003, 14 (03) : 289 - 311
  • [34] A SPLITTING THEOREM ON TORIC MANIFOLDS
    Huang, Hongnian
    MATHEMATICAL RESEARCH LETTERS, 2013, 20 (02) : 273 - 278
  • [35] THE TORSION OF REAL TORIC MANIFOLDS
    Kim, Jin Hong
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (02) : 901 - 911
  • [36] Deformations of Extremal Toric Manifolds
    Rollin, Yann
    Tipler, Carl
    JOURNAL OF GEOMETRIC ANALYSIS, 2014, 24 (04) : 1929 - 1958
  • [37] Toric nearly Kahler manifolds
    Moroianu, Andrei
    Nagy, Paul-Andi
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2019, 55 (04) : 703 - 717
  • [38] Toric manifolds and complex cobordisms
    Bukhshtaber, VM
    Ray, N
    RUSSIAN MATHEMATICAL SURVEYS, 1998, 53 (02) : 371 - 373
  • [39] Universal Complexes in Toric Topology
    Baralic, Dorde
    Vavpetic, Ales
    Vucic, Aleksandar
    RESULTS IN MATHEMATICS, 2023, 78 (06)
  • [40] Universal Complexes in Toric Topology
    Đorđe Baralić
    Aleš Vavpetič
    Aleksandar Vučić
    Results in Mathematics, 2023, 78