THE TOPOLOGY OF TORIC ORIGAMI MANIFOLDS

被引:11
|
作者
Holm, Tara S. [1 ]
Pires, Ana Rita [1 ]
机构
[1] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
EQUIVARIANT COHOMOLOGY;
D O I
10.4310/MRL.2013.v20.n5.a6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A folded symplectic form on a manifold is a closed 2-form with the mildest possible degeneracy along a hypersurface. A special class of folded symplectic manifolds are the origami symplectic manifolds, studied by Cannas da Silva, Guillemin and Pires, who classified toric origami manifolds by combinatorial origami templates. In this paper, we examine the topology of toric origami manifolds that have acyclic origami template and coorientable folding hypersurface. We prove that the cohomology is concentrated in even degrees, and that the equivariant cohomology satisfies the Goresky, Kottwitz and MacPherson description. Finally, we show that toric origami manifolds with coorientable folding hypersurface provide a class of examples of Masuda and Panov's torus manifolds.
引用
收藏
页码:885 / 906
页数:22
相关论文
共 50 条
  • [21] TORIC KATO MANIFOLDS
    Istrati, Nicolina
    Otiman, Alexandra
    Pontecorvo, Massimiliano
    Ruggiero, Matteo
    JOURNAL DE L ECOLE POLYTECHNIQUE-MATHEMATIQUES, 2022, 9 : 1347 - 1395
  • [22] Hamiltonian diffeomorphisms of toric manifolds and flag manifolds
    Vina, Andres
    JOURNAL OF GEOMETRY AND PHYSICS, 2007, 57 (03) : 943 - 965
  • [23] Extremal metrics on toric manifolds and homogeneous toric bundles
    Li, An-Min
    Lian, Zhao
    Sheng, Li
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2023, : 237 - 259
  • [24] TORIC MANIFOLDS OVER CYCLOHEDRA
    Park, Seonjeong
    OSAKA JOURNAL OF MATHEMATICS, 2019, 56 (02) : 237 - 254
  • [25] SPHERICAL CONTACT TORIC MANIFOLDS
    Li, Hui
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (01) : 349 - 353
  • [26] Deformations of Extremal Toric Manifolds
    Yann Rollin
    Carl Tipler
    The Journal of Geometric Analysis, 2014, 24 : 1929 - 1958
  • [27] The integral cohomology of toric manifolds
    Franz M.
    Proceedings of the Steklov Institute of Mathematics, 2006, 252 (1) : 53 - 62
  • [28] Moduli spaces of toric manifolds
    Á. Pelayo
    A. R. Pires
    T. S. Ratiu
    S. Sabatini
    Geometriae Dedicata, 2014, 169 : 323 - 341
  • [29] On non projective toric manifolds
    Bonavero, L
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2000, 128 (03): : 407 - 431
  • [30] On the KO -groups of toric manifolds
    Cai, Li
    Choi, Suyoung
    Park, Hanchul
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2020, 20 (05): : 2589 - 2607