Multicenter study demonstrates radiomic features derived from magnetic resonance perfusion images identify pseudoprogression in glioblastoma

被引:126
作者
Elshafeey, Nabil [1 ]
Kotrotsou, Aikaterini [1 ,2 ]
Hassan, Ahmed [1 ]
Elshafei, Nancy [2 ,3 ]
Hassan, Islam [2 ]
Ahmed, Sara [2 ]
Abrol, Srishti [1 ]
Agarwal, Anand [1 ]
El Salek, Kamel [1 ]
Bergamaschi, Samuel [4 ]
Acharya, Jay [4 ]
Moron, Fanny E. [5 ]
Law, Meng [4 ,6 ]
Fuller, Gregory N. [7 ]
Huse, Jason T. [7 ]
Zinn, Pascal O. [8 ,9 ,10 ]
Colen, Rivka R. [1 ,2 ,10 ,11 ]
机构
[1] Univ Texas MD Anderson Canc Ctr, Dept Diagnost Radiol, Houston, TX 77030 USA
[2] Univ Texas MD Anderson Canc Ctr, Dept Canc Syst Imaging, Houston, TX 77054 USA
[3] Natl Res Ctr, Dept Restorat & Dent Mat, Cairo 12622, Egypt
[4] Univ Southern Calif, Keck Sch Med, Dept Radiol, Los Angeles, CA 90033 USA
[5] Baylor Coll Med, Dept Radiol, Houston, TX 77030 USA
[6] Alfred Hlth & Monash Univ, Melbourne, Vic 3004, Australia
[7] Univ Texas MD Anderson Canc Ctr, Dept Pathol Anat & Translat Mol Pathol, Houston, TX 77030 USA
[8] Baylor Coll Med, Dept Neurosurg, Houston, TX 77030 USA
[9] Univ Pittsburgh, Dept Neurol Surg, Pittsburgh, PA 15213 USA
[10] UPMC, Hillman Canc Ctr, Pittsburgh, PA 15232 USA
[11] Univ Pittsburgh, Dept Radiol, Pittsburgh, PA 15213 USA
关键词
HIGH-GRADE GLIOMAS; TEXTURE ANALYSIS; BRAIN-TUMORS; MRI; NECROSIS; RADIOTHERAPY; SURVIVAL; CRITERIA; THERAPY; TRACER;
D O I
10.1038/s41467-019-11007-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Pseudoprogression (PsP) is a diagnostic clinical dilemma in cancer. In this study, we retrospectively analyse glioblastoma patients, and using their dynamic susceptibility contrast and dynamic contrast-enhanced perfusion MRI images we build a classifier using radiomic features obtained from both Ktrans and rCBV maps coupled with support vector machines. We achieve an accuracy of 90.82% (area under the curve (AUC) = 89.10%, sensitivity = 91.36%, 67 specificity = 88.24%, p = 0.017) in differentiating between pseudoprogression (PsP) and progressive disease (PD). The diagnostic performances of the models built using radiomic features from Ktrans and rCBV separately were equally high (Ktrans: AUC = 94%, 69 p = 0.012; rCBV: AUC = 89.8%, p = 0.004). Thus, this MR perfusion-based radiomic model demonstrates high accuracy, sensitivity and specificity in discriminating PsP from PD, thus provides a reliable alternative for noninvasive identification of PsP versus PD at the time of clinical/radiologic question. This study also illustrates the successful application of radiomic analysis as an advanced processing step on different MR perfusion maps.
引用
收藏
页数:9
相关论文
共 55 条
[21]   Malignant gliomas: MR imaging spectrum of radiation therapy- and chemotherapy-induced necrosis of the brain after treatment [J].
Kumar, AJ ;
Leeds, NE ;
Fuller, GN ;
Van Tassel, P ;
Maor, MH ;
Sawaya, RE ;
Levin, VA .
RADIOLOGY, 2000, 217 (02) :377-384
[22]  
Law M, 2003, AM J NEURORADIOL, V24, P1989
[23]  
Law Meng, 2009, Cancer Imaging, V9 Spec No A, pS4, DOI 10.1102/1470-7330.2009.9002
[24]   Molecular and histologic characteristics of pseudoprogression in diffuse gliomas [J].
Lin, Andrew L. ;
White, Michael ;
Miller-Thomas, Michelle M. ;
Fulton, Robert S. ;
Tsien, Christina I. ;
Rich, Keith M. ;
Schmidt, Robert E. ;
Tran, David D. ;
Dahiya, Sonika .
JOURNAL OF NEURO-ONCOLOGY, 2016, 130 (03) :529-533
[25]   Immunotherapy response assessment in neuro-oncology: a report of the RANO working group [J].
Okada, Hideho ;
Weller, Michael ;
Huang, Raymond ;
Finocchiaro, Gaetano ;
Gilbert, Mark R. ;
Wick, Wolfgang ;
Ellingson, Benjamin M. ;
Hashimoto, Naoya ;
Pollack, Ian F. ;
Brandes, Alba A. ;
Franceschi, Enrico ;
Herold-Mende, Christel ;
Nayak, Lakshmi ;
Panigrahy, Ashok ;
Pope, Whitney B. ;
Prins, Robert ;
Sampson, John H. ;
Wen, Patrick Y. ;
Reardon, David A. .
LANCET ONCOLOGY, 2015, 16 (15) :E534-E542
[26]  
Ostrom QT, 2015, NEURO-ONCOLOGY, V17, P1, DOI [10.1093/neuonc/nov189, 10.1093/neuonc/now207]
[27]   Integrated radiomic framework for breast cancer and tumor biology using advanced machine learning and multiparametric MRI [J].
Parekh, Vishwa S. ;
Jacobs, Michael A. .
NPJ BREAST CANCER, 2017, 3
[28]   Machine Learning methods for Quantitative Radiomic Biomarkers [J].
Parmar, Chintan ;
Grossmann, Patrick ;
Bussink, Johan ;
Lambin, Philippe ;
Aerts, Hugo J. W. L. .
SCIENTIFIC REPORTS, 2015, 5
[29]   Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy [J].
Peng, HC ;
Long, FH ;
Ding, C .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2005, 27 (08) :1226-1238
[30]  
Platt J., 1999, ADV LARGE MARGIN CLA, V3, P61