Multicenter study demonstrates radiomic features derived from magnetic resonance perfusion images identify pseudoprogression in glioblastoma

被引:122
作者
Elshafeey, Nabil [1 ]
Kotrotsou, Aikaterini [1 ,2 ]
Hassan, Ahmed [1 ]
Elshafei, Nancy [2 ,3 ]
Hassan, Islam [2 ]
Ahmed, Sara [2 ]
Abrol, Srishti [1 ]
Agarwal, Anand [1 ]
El Salek, Kamel [1 ]
Bergamaschi, Samuel [4 ]
Acharya, Jay [4 ]
Moron, Fanny E. [5 ]
Law, Meng [4 ,6 ]
Fuller, Gregory N. [7 ]
Huse, Jason T. [7 ]
Zinn, Pascal O. [8 ,9 ,10 ]
Colen, Rivka R. [1 ,2 ,10 ,11 ]
机构
[1] Univ Texas MD Anderson Canc Ctr, Dept Diagnost Radiol, Houston, TX 77030 USA
[2] Univ Texas MD Anderson Canc Ctr, Dept Canc Syst Imaging, Houston, TX 77054 USA
[3] Natl Res Ctr, Dept Restorat & Dent Mat, Cairo 12622, Egypt
[4] Univ Southern Calif, Keck Sch Med, Dept Radiol, Los Angeles, CA 90033 USA
[5] Baylor Coll Med, Dept Radiol, Houston, TX 77030 USA
[6] Alfred Hlth & Monash Univ, Melbourne, Vic 3004, Australia
[7] Univ Texas MD Anderson Canc Ctr, Dept Pathol Anat & Translat Mol Pathol, Houston, TX 77030 USA
[8] Baylor Coll Med, Dept Neurosurg, Houston, TX 77030 USA
[9] Univ Pittsburgh, Dept Neurol Surg, Pittsburgh, PA 15213 USA
[10] UPMC, Hillman Canc Ctr, Pittsburgh, PA 15232 USA
[11] Univ Pittsburgh, Dept Radiol, Pittsburgh, PA 15213 USA
关键词
HIGH-GRADE GLIOMAS; TEXTURE ANALYSIS; BRAIN-TUMORS; MRI; NECROSIS; RADIOTHERAPY; SURVIVAL; CRITERIA; THERAPY; TRACER;
D O I
10.1038/s41467-019-11007-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Pseudoprogression (PsP) is a diagnostic clinical dilemma in cancer. In this study, we retrospectively analyse glioblastoma patients, and using their dynamic susceptibility contrast and dynamic contrast-enhanced perfusion MRI images we build a classifier using radiomic features obtained from both Ktrans and rCBV maps coupled with support vector machines. We achieve an accuracy of 90.82% (area under the curve (AUC) = 89.10%, sensitivity = 91.36%, 67 specificity = 88.24%, p = 0.017) in differentiating between pseudoprogression (PsP) and progressive disease (PD). The diagnostic performances of the models built using radiomic features from Ktrans and rCBV separately were equally high (Ktrans: AUC = 94%, 69 p = 0.012; rCBV: AUC = 89.8%, p = 0.004). Thus, this MR perfusion-based radiomic model demonstrates high accuracy, sensitivity and specificity in discriminating PsP from PD, thus provides a reliable alternative for noninvasive identification of PsP versus PD at the time of clinical/radiologic question. This study also illustrates the successful application of radiomic analysis as an advanced processing step on different MR perfusion maps.
引用
收藏
页数:9
相关论文
共 55 条
  • [1] Abrol Srishti, 2017, Top Magn Reson Imaging, V26, P43, DOI 10.1097/RMR.0000000000000117
  • [2] [Anonymous], 2013, LANG ENV STAT COMP
  • [3] [Anonymous], 2016, NEUROSURGERY, DOI [10.1227/01.neu.0000489709.98960.e1, DOI 10.1227/01.NEU.0000489709.98960.E1]
  • [4] [Anonymous], 1991, PAPOULIS ATHANASIOS, P4
  • [5] Detection of immune responses after immunotherapy in glioblastoma using PET and MRI
    Antonios, Joseph P.
    Soto, Horacio
    Everson, Richard G.
    Moughon, Diana L.
    Wang, Anthony C.
    Orpilla, Joey
    Radu, Caius
    Ellingson, Benjamin M.
    Lee, Jason T.
    Cloughesy, Timothy
    Phelps, Michael E.
    Czernin, Johannes
    Liau, Linda M.
    Prins, Robert M.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (38) : 10220 - 10225
  • [6] Texture analysis of medical images
    Castellano, G
    Bonilha, L
    Li, LM
    Cendes, F
    [J]. CLINICAL RADIOLOGY, 2004, 59 (12) : 1061 - 1069
  • [7] Early necrosis following concurrent Temodar and radiotherapy in patients with glioblastoma
    Chamberlain, Marc C.
    Glantz, Michael J.
    Chalmers, Lisa
    Van Horn, Alixis
    Sloan, Andrew E.
    [J]. JOURNAL OF NEURO-ONCOLOGY, 2007, 82 (01) : 81 - 83
  • [8] An analysis of co-occurrence texture statistics as a function of grey level quantization
    Clausi, DA
    [J]. CANADIAN JOURNAL OF REMOTE SENSING, 2002, 28 (01) : 45 - 62
  • [9] Radiomics to predict immunotherapy-induced pneumonitis: proof of concept
    Colen, Rivka R.
    Fujii, Takeo
    Bilen, Mehmet Asim
    Kotrotsou, Aikaterini
    Abrol, Srishti
    Hess, Kenneth R.
    Hajjar, Joud
    Suarez-Almazor, Maria E.
    Alshawa, Anas
    Hong, David S.
    Giniebra-Camejo, Dunia
    Stephen, Bettzy
    Subbiah, Vivek
    Sheshadri, Ajay
    Mendoza, Tito
    Fu, Siqing
    Sharma, Padmanee
    Meric-Bernstam, Funda
    Naing, Aung
    [J]. INVESTIGATIONAL NEW DRUGS, 2018, 36 (04) : 601 - 607
  • [10] Assessment of tumor heterogeneity: An emerging imaging tool for clinical practice?
    Davnall F.
    Yip C.S.P.
    Ljungqvist G.
    Selmi M.
    Ng F.
    Sanghera B.
    Ganeshan B.
    Miles K.A.
    Cook G.J.
    Goh V.
    [J]. Insights into Imaging, 2012, 3 (6) : 573 - 589