Einstein Riemannian metrics and Einstein-Randers metrics on a class of homogeneous manifolds

被引:6
|
作者
Kang, Yifang [1 ]
Chen, Zhiqi [2 ,3 ]
机构
[1] Cent South Univ Forestry & Technol, Inst Math & Phys, Changsha 410004, Hunan, Peoples R China
[2] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[3] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
Einstein metrics; Einstein-Randers metrics; Homogeneous manifolds; GENERALIZED FLAG MANIFOLDS;
D O I
10.1016/j.na.2014.05.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we get a class of homogeneous manifolds admitting Einstein Riemannian metrics. Moreover, we prove that they admit non-Riemannian Einstein-Randers metrics. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:86 / 91
页数:6
相关论文
共 50 条
  • [1] Einstein metrics and Einstein-Randers metrics on a class of homogeneous manifolds
    Chen, Chao
    Chen, Zhiqi
    Hu, Yuwang
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2018, 15 (04)
  • [2] Einstein Riemannian metrics and Einstein-Randers metrics on a class of homogeneous manifolds (vol 107, pg 86, 2014)
    Kang, Yifang
    Chen, Zhiqi
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 130 : 408 - 409
  • [3] Homogeneous manifolds admitting non-Riemannian Einstein-Randers metrics
    CHEN ZhiQi
    DENG ShaoQiang
    LIANG Ke
    ScienceChina(Mathematics), 2015, 58 (07) : 1473 - 1482
  • [4] Einstein-Randers metrics on some homogeneous manifolds
    Chen, Zhiqi
    Deng, Shaoqiang
    Liang, Ke
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 91 : 114 - 120
  • [5] Homogeneous manifolds admitting non-Riemannian Einstein-Randers metrics
    Chen Zhiqi
    Deng ShaoQiang
    Liang Ke
    SCIENCE CHINA-MATHEMATICS, 2015, 58 (07) : 1473 - 1482
  • [6] Homogeneous manifolds admitting non-Riemannian Einstein-Randers metrics
    ZhiQi Chen
    ShaoQiang Deng
    Ke Liang
    Science China Mathematics, 2015, 58 : 1473 - 1482
  • [7] Homogeneous Einstein-Randers metrics on some Stiefel manifolds
    Tan, Ju
    Xu, Na
    JOURNAL OF GEOMETRY AND PHYSICS, 2018, 131 : 182 - 188
  • [8] New Einstein-Randers metrics on some homogeneous manifolds
    Tan, Ju
    Xu, Na
    MATHEMATISCHE NACHRICHTEN, 2018, 291 (17-18) : 2693 - 2708
  • [9] Homogeneous Einstein-Randers metrics on spheres
    Wang, Hui
    Huang, Libing
    Deng, Shaoqiang
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (17) : 6295 - 6301
  • [10] Invariant Einstein-Randers metrics on Stiefel manifolds
    Wang, Hui
    Deng, Shaoqiang
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2013, 14 (01) : 594 - 600