Einstein Riemannian metrics and Einstein-Randers metrics on a class of homogeneous manifolds

被引:6
作者
Kang, Yifang [1 ]
Chen, Zhiqi [2 ,3 ]
机构
[1] Cent South Univ Forestry & Technol, Inst Math & Phys, Changsha 410004, Hunan, Peoples R China
[2] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[3] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
Einstein metrics; Einstein-Randers metrics; Homogeneous manifolds; GENERALIZED FLAG MANIFOLDS;
D O I
10.1016/j.na.2014.05.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we get a class of homogeneous manifolds admitting Einstein Riemannian metrics. Moreover, we prove that they admit non-Riemannian Einstein-Randers metrics. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:86 / 91
页数:6
相关论文
共 18 条
[1]  
Antonelli P.L., 1993, THEORY SPRAYS FINSLE
[2]   NEW INVARIANT EINSTEIN-METRICS ON GENERALIZED FLAG MANIFOLDS [J].
ARVANITOYEORGOS, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 337 (02) :981-995
[3]   Einstein metrics on compact Lie groups which are not naturally reductive [J].
Arvanitoyeorgos, Andreas ;
Mori, Kunihiko ;
Sakane, Yusuke .
GEOMETRIAE DEDICATA, 2012, 160 (01) :261-285
[4]   INVARIANT EINSTEIN METRICS ON GENERALIZED FLAG MANIFOLDS WITH TWO ISOTROPY SUMMANDS [J].
Arvanitoyeorgos, Andreas ;
Chrysikos, Ioannis .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2011, 90 (02) :237-251
[5]   Invariant Einstein metrics on flag manifolds with four isotropy summands [J].
Arvanitoyeorgos, Andreas ;
Chrysikos, Ioannis .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2010, 37 (02) :185-219
[6]  
Bao D, 2004, J DIFFER GEOM, V66, P377
[7]  
Bao D., 2004, A Sampler of Riemann-Finsler Geometry, V50, P197
[8]  
Chen Z., 2014, SCI CHINA M IN PRESS
[9]   Einstein-Randers metrics on some homogeneous manifolds [J].
Chen, Zhiqi ;
Deng, Shaoqiang ;
Liang, Ke .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 91 :114-120
[10]  
Deng S., 2009, C R ACAD SCI PARIS 1, V367, P1169