Reidemeister Torsion and Dehn Surgery on Twist Knots

被引:8
作者
Tran, Anh T. [1 ,2 ]
机构
[1] Univ Texas Dallas, Richardson, TX 75083 USA
[2] Univ Texas Dallas, Dept Math Sci, Richardson, TX 75080 USA
关键词
Dehn surgery; nonabelian representation; Reidemeister torsion; twist knot; NONABELIAN REPRESENTATIONS;
D O I
10.3836/tjm/1484903134
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We compute the Reidemeister torsion of the complement of a twist knot in S-3 and that of the 3-manifold obtained by a 1/q-Dehn surgery on a twist knot.
引用
收藏
页码:517 / 526
页数:10
相关论文
共 12 条
[1]   NON-ABELIAN REIDEMEISTER TORSION FOR TWIST KNOTS [J].
Dubois, Jerome ;
Vu Huynh ;
Yamaguchi, Yoshikazu .
JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2009, 18 (03) :303-341
[2]   A-formula for the A-polynomial of twist knots [J].
Hoste, J ;
Shanahan, PD .
JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2004, 13 (02) :193-209
[3]  
Johnson, GEOMETRIC FORM UNPUB
[4]  
KITANO T, 1994, OSAKA J MATH, V31, P523
[5]  
KITANO T., ARXIVI50600712
[6]  
Kitano T, 1994, Tokyo J. Math., V17, P59
[7]   2 COMPLEXES WHICH ARE HOMEOMORPHIC BUT COMBINATORIALLY DISTINCT [J].
MILNOR, J .
ANNALS OF MATHEMATICS, 1961, 74 (03) :575-&
[8]   A DUALITY THEOREM FOR REIDEMEISTER TORSION [J].
MILNOR, J .
ANNALS OF MATHEMATICS, 1962, 76 (01) :137-&
[9]   WHITEHEAD TORSION [J].
MILNOR, J .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1966, 72 (03) :358-&
[10]   Twisted Alexander polynomials of twist knots for nonabelian representations [J].
Morifuji, Takayuki .
BULLETIN DES SCIENCES MATHEMATIQUES, 2008, 132 (05) :439-453