On Generalized Ramsey Numbers for 3-Uniform Hypergraphs

被引:8
作者
Dudek, Andrzej [1 ]
Mubayi, Dhruv [2 ]
机构
[1] Western Michigan Univ, Dept Math, Kalamazoo, MI 49008 USA
[2] Univ Illinois, Dept Math Stat & Comp Sci, Chicago, IL 60607 USA
关键词
hypergraphs; Ramsey numbers; FREE SUBGRAPHS; FREE GRAPHS;
D O I
10.1002/jgt.21760
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The well-known Ramsey number r(t,u) is the smallest integer n such that every K-t-free graph of order n contains an independent set of size u. In other words, it contains a subset of u vertices with no K-2. Erdos and Rogers introduced a more general problem replacing K-2 by Ks for 2 <= s <t. Extending the problem of determining Ramsey numbers they defined the numbers f(s,t)(n) = min{max{|W|:W subset of V(G) and G[W] contains no K-s}},where the minimum is taken over all K-t-free graphs G of order n. In this note, we study an analogous function f(s,t)((3))(n) for 3-uniform hypergraphs. In particular, we show that there are constants c(1) and c(2) depending only on s such that c1(log n)(1/4) (loglogn/logloglogn)(1/2) < f(s,s+1)((3))(n) < c(2) log n.
引用
收藏
页码:217 / 223
页数:7
相关论文
共 50 条
  • [31] ONE MORE TURAN NUMBER AND RAMSEY NUMBER FOR THE LOOSE 3-UNIFORM PATH OF LENGTH THREE
    Polcyn, Joanna
    [J]. DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2017, 37 (02) : 443 - 464
  • [32] The equivalence of the Szemerédi and Petruska conjecture and the maximum order of 3-uniform T-critical hypergraphs
    Kezdy, Andre E.
    Lehel, Jeno
    [J]. EUROPEAN JOURNAL OF MATHEMATICS, 2023, 9 (03)
  • [33] Anti-Ramsey number of expansions of paths and cycles in uniform hypergraphs
    Tang, Yucong
    Li, Tong
    Yan, Guiying
    [J]. JOURNAL OF GRAPH THEORY, 2022, 101 (04) : 668 - 685
  • [34] Ramsey numbers of semi-algebraic and semi-linear hypergraphs
    Jin, Zhihan
    Tomon, Istvan
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2023, 163 : 54 - 82
  • [35] Saturation for the 3-uniform loose 3-cycle
    English, Sean
    Kostochka, Alexandr
    Zirlin, Dara
    [J]. DISCRETE MATHEMATICS, 2023, 346 (11)
  • [36] RAMSEY PROBLEMS FOR BERGE HYPERGRAPHS
    Gerbner, Daniel
    Methuku, Abhishek
    Omidi, Gholamreza
    Vizer, Mate
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2020, 34 (01) : 351 - 369
  • [37] Ramsey Numbers
    su ya xin
    [J]. 校园英语, 2019, (49) : 253 - 255
  • [38] On the Size-Ramsey Number of Hypergraphs
    Dudek, Andrzej
    La Fleur, Steven
    Mubayi, Dhruv
    Rodl, Vojtech
    [J]. JOURNAL OF GRAPH THEORY, 2017, 86 (01) : 104 - 121
  • [39] RAMSEY NUMBERS FOR NONTRIVIAL BERGE CYCLES
    Nie, Jiaxi
    Verstraete, Jacques
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2022, 36 (01) : 103 - 113
  • [40] Betti Numbers of Hypergraphs
    Emtander, Eric
    [J]. COMMUNICATIONS IN ALGEBRA, 2009, 37 (05) : 1545 - 1571