Dependencies of Surface Condensation on the Wettability and Nanostructure Size Differences

被引:11
作者
Liao, Ming-Jun [1 ]
Duan, Li-Qiang [1 ]
机构
[1] North China Elect Power Univ, Key Lab Power Stn Energy Transfer Convers & Syst, Natl Thermal Power Engn & Technol Res Ctr, Sch Energy Power & Mech Engn,Minist Educ, Beijing 102206, Peoples R China
基金
中国国家自然科学基金;
关键词
condensation; hydrophilic surface; hydrophobic surface; nanostructure size; MOLECULAR-DYNAMICS SIMULATION; LIQUID ARGON FILMS; ENHANCED CONDENSATION; THERMAL PERFORMANCE; VAPOR CONDENSATION; HEAT-TRANSFER; WATER; EVAPORATION; FLAT;
D O I
10.3390/nano10091831
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
When changing surface wettability and nanostructure size, condensation behavior displays distinct features. In this work, we investigated evaporation on a flat hydrophilic surface and condensation on both hydrophilic and hydrophobic nanostructured surfaces at the nanoscale using molecular dynamics simulations. The simulation results on hydrophilic surfaces indicated that larger groove widths and heights produced more liquid argon atoms, a quicker temperature response, and slower potential energy decline. These three characteristics closely relate to condensation areas or rates, which are determined by groove width and height. For condensation heat transfer, when the groove width was small, the change of groove height had little effect, while change of groove height caused a significant variation in the heat flux with a large groove width. When the cold wall was hydrophobic, the groove height became a significant impact factor, which caused no vapor atoms to condense in the groove with a larger height. The potential energy decreased with the increase of the groove height, which demonstrates a completely opposing trend when compared with hydrophilic surfaces.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 39 条
[1]   Surface engineering for phase change heat transfer: A review [J].
Attinger D. ;
Frankiewicz C. ;
Betz A.R. ;
Schutzius T.M. ;
Ganguly R. ;
Das A. ;
Kim C.-J. ;
Megaridis C.M. .
MRS Energy & Sustainability, 2014, 1 (1)
[2]   Thermal vapor condensation of uniform graphitic carbon nitride films with remarkable photocurrent density for photoelectrochemical applications [J].
Bian, Juncao ;
Li, Qian ;
Huang, Chao ;
Li, Jianfu ;
Guo, Yao ;
Zaw, Myowin ;
Zhang, Rui-Qin .
NANO ENERGY, 2015, 15 :353-361
[3]   Nanograssed Micropyramidal Architectures for Continuous Dropwise Condensation [J].
Chen, Xuemei ;
Wu, Jun ;
Ma, Ruiyuan ;
Hua, Meng ;
Koratkar, Nikhil ;
Yao, Shuhuai ;
Wang, Zuankai .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (24) :4617-4623
[4]   Molecular dynamics study of anisotropic behaviours of water droplet on textured surfaces with various energies [J].
Ding, Wenyang ;
Han, Dan ;
Zhang, Jingzhi ;
Ma, Qingming ;
Li, Xiaoyan ;
Zhang, Jingchao ;
Wang, Xinyu .
MOLECULAR PHYSICS, 2021, 119 (03)
[5]   Effects of Solid Fraction on Droplet Wetting and Vapor Condensation: A Molecular Dynamic Simulation Study [J].
Gao, Shan ;
Liao, Quanwen ;
Liu, Wei ;
Liu, Zhichun .
LANGMUIR, 2017, 33 (43) :12379-12388
[6]   Tear evaporation rates in Sjogren Syndrome and non-Sjogren dry eye patients [J].
Goto, Eiki ;
Matsumoto, Yukihiro ;
Kamoi, Mizuka ;
Endo, Koji ;
Ishida, Reiko ;
Dogru, Murat ;
Kaido, Minako ;
Kojima, Takashi ;
Tsubota, Kazuo .
AMERICAN JOURNAL OF OPHTHALMOLOGY, 2007, 144 (01) :81-85
[7]   Atomistic modelling of thin film argon evaporation over different solid surfaces at different wetting conditions [J].
Hasan, Mohammad Nasim ;
Shavik, Sheikh Mohammad ;
Mukut, Khaled Mosharraf ;
Rabbi, Kazi Fazle ;
Faisal, A. H. M. .
MICRO & NANO LETTERS, 2018, 13 (03) :351-356
[8]   Molecular Dynamics Simulation of the Influence of Nanoscale Structure on Water Wetting and Condensation [J].
Hiratsuka, Masaki ;
Emoto, Motoki ;
Konno, Akihisa ;
Ito, Shinichiro .
MICROMACHINES, 2019, 10 (09)
[9]   Nanostructured materials for water desalination [J].
Humplik, T. ;
Lee, J. ;
O'Hern, S. C. ;
Fellman, B. A. ;
Baig, M. A. ;
Hassan, S. F. ;
Atieh, M. A. ;
Rahman, F. ;
Laoui, T. ;
Karnik, R. ;
Wang, E. N. .
NANOTECHNOLOGY, 2011, 22 (29)
[10]   Steam generation in a nanoparticle-based solar receiver [J].
Jin, Haichuan ;
Lin, Guiping ;
Bai, Lizhan ;
Zeiny, Aimen ;
Wen, Dongsheng .
NANO ENERGY, 2016, 28 :397-406