Self-adhesive ionomers for durable low-temperature anion exchange membrane electrolysis

被引:24
作者
Chen, Mengjie [1 ]
Mandal, Mrinmay [1 ]
Groenhout, Katelyn [1 ]
McCool, Geoffrey [2 ]
Tee, Hui Min [1 ]
Zulevi, Barr [2 ]
Kohl, Paul A. [1 ]
机构
[1] Georgia Inst Technol, Chem & Biomol Engn, Atlanta, GA 30332 USA
[2] Pajarito Powder, 3600 Osuna Rd NE,Suite 309, Albuquerque, NM 87109 USA
关键词
HIGH-PERFORMANCE; HYDROGEN-PRODUCTION; DURABILITY; EVOLUTION;
D O I
10.1016/j.jpowsour.2022.231495
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Low-temperature water electrolysis using an anion conductive polymer electrolyte has several potential advantages over other technologies, however, the fabrication of durable alkaline electrodes remains a challenge. Detachment of catalysts results in the loss of electrochemical surface area. Simple mixtures of ionomer and catalyst can suffer from poor catalyst adhesion because only physical adhesion is used to bind the components together. A family of chemically bonded, self-adherent, hydroxide conducting ionomers were synthesized and tested under alkaline electrolysis conditions with nickel ferrite anode electrocatalysts and platinum-nickel cathode catalyst. The ionomers are based on hydroxide conducting poly(norbornene) polymers used as the solid polymer electrolyte in alkaline fuel cells and electrolyzers. The synthesized terpolymer ionomers have been functionalized to provide pendant sites for covalent chemical bonding of bis(phenyl)-A-diglycidyl ether to the ionomer, catalyst, and porous transport layer. The electrodes show excellent adhesion between the catalyst particles, porous transport layer and ion-omer, as determined by adhesion measurements and electrolysis performance. The AEM electrolyzer had stable voltage performance under high current density (1 A/ cm2 at 1.83 V (67% voltage efficiency)) for extended time periods (> 600 h) without degradation.
引用
收藏
页数:8
相关论文
共 35 条
[1]   Ionomers for electrochemical energy conversion & storage technologies [J].
Adhikari, Santosh ;
Pagels, Michael K. ;
Jeon, Jong Yeob ;
Bae, Chulsung .
POLYMER, 2020, 211
[2]   Anion Conducting Ionomers for Fuel Cells and Electrolyzers [J].
Ahlfield, John ;
Huang, Garrett ;
Liu, Lisha ;
Kaburagi, Yuna ;
Kim, Yunbum ;
Kohl, Paul A. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (14) :F1648-F1653
[3]   Feasibility study of using microfluidic platforms for visualizing bubble flows in electrolyzer gas diffusion layers [J].
Arbabi, F. ;
Kalantarian, A. ;
Abouatallah, R. ;
Wang, R. ;
Wallace, J. S. ;
Bazylak, A. .
JOURNAL OF POWER SOURCES, 2014, 258 :142-149
[4]   Influence of Ionomer Content in IrO2/TiO2 Electrodes on PEM Water Electrolyzer Performance [J].
Bernt, Maximilian ;
Gasteiger, Hubert A. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (11) :F3179-F3189
[5]   Poly(carbazole)-based anion-conducting materials with high performance and durability for energy conversion devices [J].
Cha, Min Suc ;
Park, Ji Eun ;
Kim, Sungjun ;
Han, Seung-Hui ;
Shin, Sang-Hun ;
Yang, Seok Hwan ;
Kim, Tae-Ho ;
Yu, Duk Man ;
So, Soonyong ;
Hong, Young Taik ;
Yoon, Sang Jun ;
Oh, Seong-Geun ;
Kang, Sun Young ;
Kim, Ok-Hee ;
Park, Hyun S. ;
Bae, Byungchan ;
Sung, Yung-Eun ;
Cho, Yong-Hun ;
Lee, Jang Yong .
ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (10) :3633-3645
[6]   Microwave-assisted facile synthesis of cobalt-iron oxide nanocomposites for oxygen production using alkaline anion exchange membrane water electrolysis [J].
Chen, Guan-Cheng ;
Wondimu, Tadele Hunde ;
Huang, Hsin-Chih ;
Wang, Kai-Chin ;
Wang, Chen-Hao .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (21) :10174-10181
[7]   Atomically Dispersed MnN4 Catalysts via Environmentally Benign Aqueous Synthesis for Oxygen Reduction: Mechanistic Understanding of Activity and Stability Improvements [J].
Chen, Mengjie ;
Li, Xing ;
Yang, Fan ;
Li, Boyang ;
Stracensky, Thomas ;
Karakalos, Stavros ;
Mukerjee, Sanjeev ;
Jia, Qingying ;
Su, Dong ;
Wang, Guofeng ;
Wu, Gang ;
Xu, Hui .
ACS CATALYSIS, 2020, 10 (18) :10523-10534
[8]   Nanocarbon/oxide composite catalysts for bifunctional oxygen reduction and evolution in reversible alkaline fuel cells: A mini review [J].
Chen, Mengjie ;
Wang, Lei ;
Yang, Haipeng ;
Zhao, Shuai ;
Xu, Hui ;
Wu, Gang .
JOURNAL OF POWER SOURCES, 2018, 375 :277-290
[9]   High-performance anion exchange membrane water electrolyzers with a current density of 7.68 A cm-2 and a durability of 1000 hours [J].
Chen, Nanjun ;
Paek, Sae Yane ;
Lee, Ju Yeon ;
Park, Jong Hyeong ;
Lee, So Young ;
Lee, Young Moo .
ENERGY & ENVIRONMENTAL SCIENCE, 2021, 14 (12) :6338-6348
[10]   Challenges In Going from Laboratory to Megawatt Scale PEM Electrolysis [J].
Danilovic, N. ;
Ayers, K. ;
Capuano, C. ;
Renner, J. ;
Wiles, L. ;
Pertoso, M. .
POLYMER ELECTROLYTE FUEL CELLS 16 (PEFC 16), 2016, 75 (14) :395-402