Robust Static H∞ Output-Feedback Control Using Polynomial Chaos

被引:0
作者
Wan, Yiming [1 ]
Shen, Dongying E.
Lucia, Sergio
Findeisen, Rolf
Braatz, Richard D. [1 ]
机构
[1] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA
来源
2018 ANNUAL AMERICAN CONTROL CONFERENCE (ACC) | 2018年
关键词
PERFORMANCE; SYSTEMS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article considers the H-infinity static output feedback control for linear time-invariant (LTI) uncertain systems with nonlinear dependence on probabilistic time-invariant parametric uncertainties. By applying polynomial chaos theory, the control synthesis problem is solved using a high-dimensional expanded system which characterizes stochastic state uncertainty propagation. In contrast to published polynomial chaos based control methods, the proposed approach aims at minimizing an upper bound of the L-2 gain from the disturbance to the controlled output. The effect of using a finite number of terms in the polynomial chaos expansions is captured by a time-varying norm-bounded uncertainty, and is explicitly taken into account. This feature avoids the use of high-order polynomial chaos expansions to alleviate the destabilizing effect of truncation errors, thus significantly reducing computational complexity. A numerical example illustrates the effectiveness of the proposed approach.
引用
收藏
页码:6804 / 6809
页数:6
相关论文
共 15 条
[1]  
Bhattacharya R, 2014, IEEE DECIS CONTR P, P2828, DOI 10.1109/CDC.2014.7039823
[2]   Robust H∞ control design for best mean performance over an uncertain-parameters box [J].
Boyarski, S ;
Shaked, U .
SYSTEMS & CONTROL LETTERS, 2005, 54 (06) :585-595
[3]  
DULLERUD G. E., 2013, A course in robust control theory: a convex approach
[4]   Linear quadratic regulation of systems with stochastic parameter uncertainties [J].
Fisher, James ;
Bhattacharya, Raktim .
AUTOMATICA, 2009, 45 (12) :2831-2841
[5]   H2 and H∞ robust output feedback control for continuous time polytopic systems [J].
Geromel, J. C. ;
Korogui, R. H. ;
Bernussou, J. .
IET CONTROL THEORY AND APPLICATIONS, 2007, 1 (05) :1541-1549
[6]  
Hinrichsen D, 1998, SIAM J CONTROL OPTIM, V36, P1604, DOI 10.1137/S0363012996301336
[7]  
Holmstrom K., USERS GUIDE TOMLAB K
[8]   Application of polynomial chaos in stability and control [J].
Hover, FS ;
Triantafyllou, MS .
AUTOMATICA, 2006, 42 (05) :789-795
[9]  
Lucia S, 2017, P AMER CONTR CONF, P5089, DOI 10.23919/ACC.2017.7963744
[10]   Nonlinear Model Predictive Control of Systems with Probabilistic Time-invariant Uncertainties [J].
Paulson, Joel A. ;
Harinath, Eranda ;
Foguth, Lucas C. ;
Braatz, Richard D. .
IFAC PAPERSONLINE, 2015, 48 (23) :16-25