Commutator algebra and abstract smoothing effect

被引:14
作者
Doi, S [1 ]
机构
[1] Univ Tsukuba, Inst Math, Tsukuba, Ibaraki 3058571, Japan
关键词
commutator algebra; smoothing effect; Schrodinger equation; dispersive equation; Mourre condition; Riemannian metric;
D O I
10.1006/jfan.1999.3466
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a "dispersive" evolution equation in a Hilbert space and prove abstract smoothing effects "in an incoming region" under a Mourre-type condition "near infinity." For this purpose, we introduce commutator algebras acting on weighted Sobolev spaces associated with two self-adjoint operators and construct various time-dependent nonnegative observables with nonpositive Heisenberg derivative. Our approach is applicable to Schrodinger evolution equations on complete Riemannian manifolds with suitable strictly convex functions near infinity: (i) asymptotically Euclidean metric with long-range metric perturbation, (ii) conformally compact metric, (iii) generalized scattering metric, (iv) metric of separation of variables near infinity, etc.
引用
收藏
页码:428 / 469
页数:42
相关论文
共 25 条
[1]   Microlocal dispersive smoothing for the Schrodinger equation [J].
Craig, W ;
Kappeler, T ;
Strauss, W .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1995, 48 (08) :769-860
[2]  
CRAIG W, 1995, SEM EQ DER PART
[3]  
DEREZINSKI J, 1997, ASYMPTOTIC COMPLETEN
[4]  
Doi S, 1996, COMMUN PART DIFF EQ, V21, P163
[5]  
DOI S, UNPUB SMOOTHING EFFE
[6]  
DOI S, 1996, SEM EQ DER PART
[7]   Smoothing effects of Schrodinger evolution groups on Riemannian manifolds [J].
Doi, SI .
DUKE MATHEMATICAL JOURNAL, 1996, 82 (03) :679-706
[8]   REMARKS ON CONVERGENCE OF THE FEYNMAN PATH-INTEGRALS [J].
FUJIWARA, D .
DUKE MATHEMATICAL JOURNAL, 1980, 47 (03) :559-600
[10]  
GERARD C, 1994, ADV STUDIES PURE MAT, V23, P69