Monolithic integration of Giant Magnetoresistance (GMR) devices onto standard processed CMOS dies

被引:16
作者
-Dolores Cubells-Beltran, M. [1 ]
Reig, C. [1 ]
De Marcellis, A. [2 ]
Figueras, E. [3 ]
Yufera, A. [4 ]
Zadov, B. [5 ]
Paperno, E. [5 ]
Cardoso, S. [6 ]
Freitas, P. P. [7 ]
机构
[1] Univ Valencia, E-46100 Burjassot, Spain
[2] Univ Aquila, I-67100 Laquila, Italy
[3] CSIC, IMB CNM, Barcelona, Spain
[4] Ben Gurion Univ Negev, IL-84105 Beer Sheva, Israel
[5] Inst Super Tecn, INESC MN IN, Lisbon, Portugal
[6] Inst Super Tecn, Dept Phys, Lisbon, Portugal
[7] INESC Microsistemas & Nanotecnol, Lisbon, Portugal
关键词
GMR; CMOS; Monolithic integration; Integrated current sensor; CURRENT SENSORS;
D O I
10.1016/j.mejo.2014.03.015
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Giant Magnetoresistance (GMR) based technology is nowadays the preferred option for low magnetic fields sensing in disciplines such as biotechnology or microelectronics. Their compatibility with standard CMOS processes is currently investigated as a key point for the development of novel applications, requiring compact electronic readout. In this paper, such compatibility has been experimentally studied with two particular non-dedicated CMOS standards: 035 pm from AMS (Austria MicroSystems) and 2.5 mu m from CNM (Centre Nacional de Microelectronica, Barcelona) as representative examples. GMR test devices have been designed and fabricated onto processed chips from both technologies. In order to evaluate so obtained devices, an extended characterization has been carried out including DC magnetic measurements and noise analysis. Moreover, a 2D-FEM (Finite Element Method) model, including the dependence of the GMR device resistance with the magnetic field, has been also developed and simulated. Its potential use as electric current sensors at the integrated circuit level has also been demonstrated. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:702 / 707
页数:6
相关论文
共 14 条
[1]  
Brown J.L., 1996, P IEEE 39 MIDW S CIR
[2]   GMR-Based Sensors Arrays for Biomagnetic Source Imaging Applications [J].
Campiglio, Paolo ;
Caruso, Laure ;
Paul, Elodie ;
Demonti, Amala ;
Azizi-Rogeau, Leila ;
Parkkonen, Lauri ;
Fermon, Claude ;
Pannetier-Lecoeur, Myriam .
IEEE TRANSACTIONS ON MAGNETICS, 2012, 48 (11) :3501-3504
[3]   A CMOS optical PSD with submicrometer resolution [J].
Doldan, Ricardo ;
Peralias, Eduardo ;
Yufera, Alberto ;
Rueda, Adoracion .
ANALOG INTEGRATED CIRCUITS AND SIGNAL PROCESSING, 2007, 53 (2-3) :109-118
[4]   Full Wheatstone Bridge Spin-Valve Based Sensors for IC Currents Monitoring [J].
Dolores Cubells-Beltran, Maria ;
Reig, Candid ;
Ramirez Munoz, Diego ;
Pinheiro Cardoso de Freitas, Susana Isabel ;
Peixeiro de Freitas, Paulo Jorge .
IEEE SENSORS JOURNAL, 2009, 9 (12) :1756-1762
[5]   A planar conducting microstructure to guide and confine magnetic beads to a sensing zone [J].
Gooneratne, Chinthaka P. ;
Liang, Cai ;
Kosel, Juergen .
MICROELECTRONIC ENGINEERING, 2011, 88 (08) :1757-1760
[6]  
Han S., 2006, P INT EL DEV M IEDM0
[7]   Nanostructures, magnetic semiconductors and spintronics [J].
KervalishVili, Paata ;
Lagutin, Alexander .
MICROELECTRONICS JOURNAL, 2008, 39 (08) :1060-1065
[8]   Tunnel magnetoresistive current sensors for IC testing [J].
Le Phan, Kim ;
Boeve, Hans ;
Vanhelmont, Frederik ;
Ikkink, Ton ;
de Jong, Frans ;
de Wilde, Hans .
SENSORS AND ACTUATORS A-PHYSICAL, 2006, 129 (1-2) :69-74
[9]   Novel Practical Built-in Current Sensors [J].
Maltabas, Samed ;
Kulovic, Kemal ;
Margala, Martin .
JOURNAL OF ELECTRONIC TESTING-THEORY AND APPLICATIONS, 2012, 28 (05) :673-683
[10]   Low frequency magnetoresistive noise in spin-valve structures [J].
Ozbay, A. ;
Gokce, A. ;
Flanagan, T. ;
Stearrett, R. A. ;
Nowak, E. R. ;
Nordman, C. .
APPLIED PHYSICS LETTERS, 2009, 94 (20)