Fuzzy cerebellar model articulation controller-based adaptive tracking control for load-carrying exoskeleton

被引:1
|
作者
Wu, Han [1 ]
Lang, Lin [2 ]
An, Honglei [1 ]
Wei, Qing [1 ]
Ma, Hongxu [1 ]
机构
[1] Natl Univ Def Technol, Coll Intelligence Sci & Technol, Robot Res Ctr, Changsha, Peoples R China
[2] Hunan Univ Finance & Econ, Changsha 410205, Peoples R China
来源
MEASUREMENT & CONTROL | 2020年 / 53卷 / 7-8期
基金
国家重点研发计划;
关键词
Load-carrying exoskeleton; fuzzy cerebellar model articulation controller; adaptive tracking control; load variation; LOWER-EXTREMITY EXOSKELETON; LIMB EXOSKELETON; DESIGN;
D O I
10.1177/0020294020944962
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Load-carrying exoskeletons need to cope with load variations, outside disturbances, and other uncertainties. This paper proposes an adaptive trajectory tracking control scheme for the load-carrying exoskeleton. The method is mainly composed of a computed torque controller and a fuzzy cerebellar model articulation controller. The fuzzy cerebellar model articulation controller is used to approximate model inaccuracies and load variations, and the computed torque controller deals with tracking errors. Simulations of an exoskeleton in squatting movements with model parameter changes and load variations are carried out, respectively. The results show a precise tracking response and high uncertainties toleration of the proposed method.
引用
收藏
页码:1472 / 1481
页数:10
相关论文
共 50 条
  • [41] Human-machine force interaction design and control for the HIT load-carrying exoskeleton
    Zhang, Chao
    Zang, Xizhe
    Leng, Zhengfei
    Yu, Hongying
    Zhao, Jie
    Zhu, Yanhe
    ADVANCES IN MECHANICAL ENGINEERING, 2016, 8 (04) : 1 - 14
  • [42] A Control Strategy for Maintaining Gait Stability and Reducing Body-Exoskeleton Interference Force in Load-Carrying Exoskeleton
    Zhang, Xianggang
    Wang, Guoyu
    Yuan, Peipei
    Xu, Hui
    Hou, Yumei
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2020, 97 (02) : 287 - 298
  • [43] The Applications of Fuzzy Differentiable Cerebellar Model Articulation Controller in Function Approximation
    Wu, Ter-Feng
    Tsai, Pu-Sheng
    Hu, Nien-Tsu
    Chen, Jen-Yang
    2016 INTERNATIONAL CONFERENCE ON SYSTEM SCIENCE AND ENGINEERING (ICSSE), 2016,
  • [44] A Control Strategy for Maintaining Gait Stability and Reducing Body-Exoskeleton Interference Force in Load-Carrying Exoskeleton
    Xianggang Zhang
    Guoyu Wang
    Peipei Yuan
    Hui Xu
    Yumei Hou
    Journal of Intelligent & Robotic Systems, 2020, 97 : 287 - 298
  • [45] Design of an Adaptive Output Recurrent Cerebellar Model Articulation Controller for Direct Torque Control System
    Lin, Wen-Bin
    Wang, Shun-Yuan
    Tseng, Chwan-Lu
    Liu, Foun-Yuan
    Chou, Jen-Hsiang
    Lee, Ching-Yin
    2017 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2017, : 2968 - 2973
  • [46] Adaptive cerebellar model articulation controller-nonlinear control system for flexible link manipulator
    Maouche, Amin Riad
    Attari, Mokhtar
    JOURNAL OF VIBRATION AND CONTROL, 2013, 19 (14) : 2109 - 2123
  • [47] Adaptive cerebellar model articulation controller-nonlinear control system for flexible link manipulator
    Maouche, Amin Riad
    Attari, Mokhtar
    JVC/Journal of Vibration and Control, 2013, 19 (14): : 2109 - 2123
  • [48] Intelligent robust tracking control for multi-arm mobile manipulators using a fuzzy cerebellar model articulation controller neural network
    Zuo, Y.
    Wang, Y.
    Zhang, Y.
    Liu, X.
    Huang, L.
    Wu, X.
    Wang, Z.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2011, 225 (C5) : 1131 - 1146
  • [49] Adaptive Filter Design Using Recurrent Cerebellar Model Articulation Controller
    Lin, Chih-Min
    Chen, Li-Yang
    Yeung, Daniel S.
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2010, 21 (07): : 1149 - 1157
  • [50] Adaptive Noise Cancellation Using Deep Cerebellar Model Articulation Controller
    Tsao, Yu
    Chu, Hao-Chun
    Fang, Shih-Hau
    Lee, Junghsi
    Lin, Chih-Min
    IEEE ACCESS, 2018, 6 : 37395 - 37402