Modelling detonation of heterogeneous explosives with embedded inert particles using detonation shock dynamics: Normal and divergent propagation in regular and simplified microstructure

被引:7
作者
Lieberthal, Brandon A. [1 ]
Bdzil, John B. [1 ,2 ]
Stewart, D. Scott [1 ]
机构
[1] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61801 USA
[2] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
关键词
metal-loaded high explosives; unit cell; wave propagation; detonation shock dynamics; numerical simulation; VALIDATION;
D O I
10.1080/13647830.2013.879208
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper discusses the mathematical formulation of Detonation Shock Dynamics (DSD) regarding a detonation shock wave passing over a series of inert spherical particles embedded in a high-explosive material. DSD provides an efficient method for studying detonation front propagation in such materials without the necessity of simulating the combustion equations for the entire system. We derive a series of partial differential equations in a cylindrical coordinate system and a moving shock-attached coordinate system which describes the propagation of detonation about a single particle, where the detonation obeys a linear shock normal velocity-curvature (D-n-kappa) DSD relation. We solve these equations numerically and observe the short-term and long-term behaviour of the detonation shock wave as it passes over the particles. We discuss the shape of the perturbed shock wave and demonstrate the periodic and convergent behaviour obtained when detonation passes over a regular, periodic array of inert spherical particles.
引用
收藏
页码:204 / 241
页数:38
相关论文
共 24 条
[11]  
Frost D.L., 2000, P C AM PHYS SOC TOP
[12]  
Gogulya MF, 2009, SHOCK WAVE SCIENCE AND TECHNOLOGY REFERENCE LIBRARY, VOL 4: HETEROGENEOUS DETONATION, P217, DOI 10.1007/978-3-540-88447-7_4
[13]   An MPI parallel level-set algorithm for propagating front curvature dependent detonation shock fronts in complex geometries [J].
Hernandez, Alberto ;
Bdzil, John B. ;
Stewart, D. Scott .
COMBUSTION THEORY AND MODELLING, 2013, 17 (01) :109-141
[14]   On the structure and accuracy of programmed burn [J].
Kapila, A. K. ;
Bdzil, J. B. ;
Stewart, D. S. .
COMBUSTION THEORY AND MODELLING, 2006, 10 (02) :289-321
[15]   Experimental validation of detonation shock dynamics in condensed explosives [J].
Lambert, DE ;
Stewart, DS ;
Yoo, SH ;
Wescott, BL .
JOURNAL OF FLUID MECHANICS, 2006, 546 (227-253) :227-253
[16]   PROPAGATION OF NITROMETHANE DETONATIONS IN POROUS-MEDIA [J].
LEE, JJ ;
FROST, DL ;
LEE, JHS ;
DREMIN, A .
SHOCK WAVES, 1995, 5 (1-2) :115-119
[17]   Shock interaction with a deformable particle: Direct numerical simulation and point-particle modeling [J].
Ling, Y. ;
Haselbacher, A. ;
Balachandar, S. ;
Najjar, F. M. ;
Stewart, D. S. .
JOURNAL OF APPLIED PHYSICS, 2013, 113 (01)
[18]   Validation of DSD relations for RDX-TNT-based cast explosives for lower diameters and Dn-κ surface equation [J].
Rofi, Shakeel Abbas ;
Fenglei, Huang .
PROPELLANTS EXPLOSIVES PYROTECHNICS, 2008, 33 (04) :311-315
[19]  
Sanders V., 2010, INT DET S COEUR AL I
[20]  
Stewart D.S., Wave tracker 3d (version 1.0)