Estimating the innovation distribution in nonparametric autoregression

被引:11
作者
Mueller, Ursula U. [2 ]
Schick, Anton [1 ]
Wefelmeyer, Wolfgang [3 ]
机构
[1] SUNY Binghamton, Dept Math Sci, Binghamton, NY 13902 USA
[2] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
[3] Univ Cologne, Math Inst, D-50931 Cologne, Germany
关键词
Residual-based empirical distribution function; Local linear smoother; Bahadur representation; EMPIRICAL DISTRIBUTION FUNCTION; WEAK-CONVERGENCE; ASYMPTOTIC-BEHAVIOR; ERROR DISTRIBUTION; SQUARED RESIDUALS; GARCH MODELS; REGRESSION; ERGODICITY; ARCH; PARAMETERS;
D O I
10.1007/s00440-008-0141-2
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove a Bahadur representation for a residual-based estimator of the innovation distribution function in a nonparametric autoregressive model. The residuals are based on a local linear smoother for the autoregression function. Our result implies a functional central limit theorem for the residual-based estimator.
引用
收藏
页码:53 / 77
页数:25
相关论文
共 33 条
[1]   Non-parametric estimation of the residual distribution [J].
Akritas, MG ;
Van Keilegom, I .
SCANDINAVIAN JOURNAL OF STATISTICS, 2001, 28 (03) :549-567
[2]  
An HZ, 1996, STAT SINICA, V6, P943
[3]  
[Anonymous], 1984, CANAD J STAT
[4]   Limit results for the empirical process of squared residuals in GARCH models [J].
Berkes, I ;
Horváth, L .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2003, 105 (02) :271-298
[5]  
Berkes I., 2002, EMPIRICAL PROCESS TE, P195
[6]   ON GEOMETRIC ERGODICITY OF NONLINEAR AUTOREGRESSIVE MODELS [J].
BHATTACHARYA, R ;
LEE, CH .
STATISTICS & PROBABILITY LETTERS, 1995, 22 (04) :311-315
[7]   On geometric ergodicity of nonlinear autoregressive models (vol 22, pg 311, 1995) [J].
Bhattacharya, R ;
Lee, C .
STATISTICS & PROBABILITY LETTERS, 1999, 41 (04) :439-440
[8]   ERGODICITY OF NONLINEAR FIRST-ORDER AUTOREGRESSIVE MODELS [J].
BHATTACHARYA, RN ;
LEE, CH .
JOURNAL OF THEORETICAL PROBABILITY, 1995, 8 (01) :207-219
[9]  
Boldin, 1998, MITT MATH SEM GIESSE, V235, P49
[10]  
Boldin M.V., 1982, Theory of Probability and Its Applications, V27, P866