Quantum Topological Error Correction Codes: The Classical-to-Quantum Isomorphism Perspective

被引:16
作者
Chandra, Daryus [1 ]
Babar, Zunaira [1 ]
Hung Viet Nguyen [1 ]
Alanis, Dimitrios [1 ]
Botsinis, Panagiotis [1 ]
Ng, Soon Xin [1 ]
Hanzo, Lajos [1 ]
机构
[1] Univ Southampton, Sch Elect & Comp Sci, Southampton SO17 1BJ, Hants, England
来源
IEEE ACCESS | 2018年 / 6卷
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
Quantum error correction codes; quantum stabilizer codes; quantum topological codes; lattice code; LDPC; MINIMUM DISTANCE; GRAPHS;
D O I
10.1109/ACCESS.2017.2784417
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We conceive and investigate the family of classical topological error correction codes (TECCs), which have the bits of a codeword arranged in a lattice structure. We then present the classical-to-quantum isomorphism to pave the way for constructing their quantum dual pairs, namely, the quantum TECCs (QTECCs). Finally, we characterize the performance of QTECCs in the face of the quantum depolarizing channel in terms of both the quantum-bit error rate (QBER) and fidelity. Specifically, from our simulation results, the threshold probability of the QBER curves for the color codes, rotated-surface codes, surface codes, and toric codes are given by 1.8 x 10(-2), 1.3 x 10(-2), 6.3 x 10(-2), and 6.8 x 10(-2), respectively. Furthermore, we also demonstrate that we can achieve the benefit of fidelity improvement at the minimum fidelity of 0.94, 0.97, and 0.99 by employing the 1/7-rate color code, the 1/9-rate rotated-surface code, and 1/13-rate surface code, respectively.
引用
收藏
页码:13729 / 13757
页数:29
相关论文
共 49 条
  • [1] Fifteen Years of Quantum LDPC Coding and Improved Decoding Strategies
    Babar, Zunaira
    Botsinis, Panagiotis
    Alanis, Dimitrios
    Ng, Soon Xin
    Hanzo, Lajos
    [J]. IEEE ACCESS, 2015, 3 : 2492 - 2519
  • [2] The Road From Classical to Quantum Codes: A Hashing Bound Approaching Design Procedure
    Babar, Zunaira
    Botsinis, Panagiotis
    Alanis, Dimitrios
    Ng, Soon Xin
    Hanzo, Lajos
    [J]. IEEE ACCESS, 2015, 3 : 146 - 176
  • [3] Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
  • [4] Topological quantum distillation
    Bombin, H.
    Martin-Delgado, M. A.
    [J]. PHYSICAL REVIEW LETTERS, 2006, 97 (18)
  • [5] Homological error correction: Classical and quantum codes
    Bombin, H.
    Martin-Delgado, M. A.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (05)
  • [6] Bravyi S. B, 1998, QUANT PH9811052, DOI 10.48550/arXiv.quant-ph/9811052
  • [7] Homological Product Codes
    Bravyi, Sergey
    Hastings, Matthew B.
    [J]. STOC'14: PROCEEDINGS OF THE 46TH ANNUAL 2014 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2014, : 273 - 282
  • [8] Quantum error correction via codes over GF (4)
    Calderbank, AR
    Rains, EM
    Shor, PW
    Sloane, NJA
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (04) : 1369 - 1387
  • [9] Good quantum error-correcting codes exist
    Calderbank, AR
    Shor, PW
    [J]. PHYSICAL REVIEW A, 1996, 54 (02): : 1098 - 1105
  • [10] Quantum-error correction and orthogonal geometry
    Calderbank, AR
    Rains, EM
    Shor, PW
    Sloane, NJA
    [J]. PHYSICAL REVIEW LETTERS, 1997, 78 (03) : 405 - 408