Epimerization and substrate gating by a TE domain in β-lactam antibiotic biosynthesis

被引:0
|
作者
Gaudelli, Nicole M. [1 ]
Townsend, Craig A. [1 ]
机构
[1] Johns Hopkins Univ, Dept Chem, Baltimore, MD 21218 USA
基金
美国国家卫生研究院;
关键词
TERMINAL THIOESTERASE DOMAIN; POLYKETIDE SYNTHASE; MUTATIONAL ANALYSIS; FUNGAL THIOESTERASE; CHAIN ELONGATION; NOCARDICIN; SPECIFICITY; SYNTHETASE; PENICILLIN; ENZYME;
D O I
10.1038/NCHEMBIO.1456
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Nonribosomal peptide synthetases are versatile engines of bioactive natural product biosynthesis that function according to the multiple carrier thiotemplate mechanism. C-terminal thioesterase (TE) domains of these giant modular proteins typically catalyze product release by hydrolysis or macrocyclization. We now report an unprecedented, dual-function TE that is involved in the biosynthesis of nocardicin A, which is the paradigm monocyclic beta-lactam antibiotic. Contrary to our expectation, a stereodefined series of potential peptide substrates for the nocardicin TE domain failed to undergo hydrolysis. The stringent discrimination against peptide intermediates was overcome by prior monocyclic beta-lactam formation at an L-seryl site. Kinetic data are interpreted such that the TE domain acts as a gatekeeper to hold the assembling peptide on an upstream domain until b-lactam formation takes place and then rapidly catalyzes epimerization, which has not been observed previously as a TE catalytic function, and thioesterase cleavage to discharge a fully fledged pentapeptide beta-lactam harboring nocardicin G, the universal precursor of the nocardicins.
引用
收藏
页码:251 / +
页数:10
相关论文
共 13 条
  • [1] GENES FOR BETA-LACTAM ANTIBIOTIC BIOSYNTHESIS
    MARTIN, JF
    GUTIERREZ, S
    ANTONIE VAN LEEUWENHOEK INTERNATIONAL JOURNAL OF GENERAL AND MOLECULAR MICROBIOLOGY, 1995, 67 (02): : 181 - 200
  • [2] Alteration of substrate selection of antibiotic acylase from β-lactam to echinocandin
    Isogai, Yasuhiro
    Nakayama, Kazuki
    PROTEIN ENGINEERING DESIGN & SELECTION, 2016, 29 (02) : 49 - 56
  • [3] Compartmentalization and transport in β-lactam antibiotic biosynthesis by filamentous fungi
    van de Kamp, M
    Driessen, AJM
    Konings, WN
    ANTONIE VAN LEEUWENHOEK INTERNATIONAL JOURNAL OF GENERAL AND MOLECULAR MICROBIOLOGY, 1999, 75 (1-2): : 41 - 78
  • [4] Compartmentalization and transport in β-lactam antibiotic biosynthesis by filamentous fungi
    Mart van de Kamp
    Arnold J.M. Driessen
    Wil N. Konings
    Antonie van Leeuwenhoek, 1999, 75 : 41 - 78
  • [5] β-Lactam formation by a non-ribosomal peptide synthetase during antibiotic biosynthesis
    Gaudelli, Nicole M.
    Long, Darcie H.
    Townsend, Craig A.
    NATURE, 2015, 520 (7547) : 383 - +
  • [6] Definition of the Common and Divergent Steps in Carbapenem β-Lactam Antibiotic Biosynthesis
    Bodner, Micah J.
    Li, Rongfeng
    Phelan, Ryan M.
    Freeman, Michael F.
    Moshos, Kristos A.
    Lloyd, Evan P.
    Townsend, Craig A.
    CHEMBIOCHEM, 2011, 12 (14) : 2159 - 2165
  • [7] The substrate scope of dehydratases in antibiotic biosynthesis and their application in kinetic resolutions
    Yin, Zhiyong
    Baer, Daniel
    Gust, Bertolt
    Dickschat, Jeroen S.
    ORGANIC & BIOMOLECULAR CHEMISTRY, 2022, 20 (46) : 9103 - 9107
  • [8] Substrate specificity of a ketosynthase domain involved in bacillaene biosynthesis
    Yin, Zhiyong
    Dickschat, Jeroen S.
    BEILSTEIN JOURNAL OF ORGANIC CHEMISTRY, 2024, 20 : 734 - 740
  • [9] Redesign of Substrate Selection in Glycopeptide Antibiotic Biosynthesis Enables Effective Formation of Alternate Peptide Backbones
    Kaniusaite, Milda
    Kittila, Tiia
    Goode, Robert J. A.
    Schittenhelm, Ralf B.
    Cryle, Max J.
    ACS CHEMICAL BIOLOGY, 2020, 15 (09) : 2444 - 2455
  • [10] Substrate Flexibility of the Flavin-Dependent Dihydropyrrole Oxidases PigB and HapB Involved in Antibiotic Prodigiosin Biosynthesis
    Couturier, Maxime
    Bhalara, Hiral D.
    Chawrai, Suresh R.
    Monson, Rita
    Williamson, Neil R.
    Salmond, George P. C.
    Leeper, Finian J.
    CHEMBIOCHEM, 2020, 21 (04) : 523 - 530