Probabilistic Linear Discriminant Analysis for Acoustic Modeling

被引:7
作者
Lu, Liang [1 ]
Renals, Steve [1 ]
机构
[1] Univ Edinburgh, Edinburgh, Midlothian, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Acoustic modeling; automatic speech recognition; probabilistic linear discriminant analysis; GAUSSIAN MIXTURE-MODELS; HIDDEN MARKOV-MODELS; COVARIANCE MATRICES; NEURAL-NETWORKS; SPEECH; RECOGNITION;
D O I
10.1109/LSP.2014.2313410
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this letter, we propose a new acoustic modeling approach for automatic speech recognition based on probabilistic linear discriminant analysis (PLDA), which is used to model the state density function for the standard hidden Markov models (HMMs). Unlike the conventional Gaussian mixture models (GMMs) where the correlations are weakly modelled by using the diagonal covariance matrices, PLDA captures the correlations of feature vector in subspaces without vastly expanding the model. It also allows the usage of high dimensional feature input, and therefore is more flexible to make use of different type of acoustic features. We performed the preliminary experiments on the Switchboard corpus, and demonstrated the feasibility of this acoustic model.
引用
收藏
页码:702 / 706
页数:5
相关论文
共 50 条
  • [41] Convergence proof of matrix dynamics for online linear discriminant analysis
    Hiraoka, Kazuyuki
    JOURNAL OF MULTIVARIATE ANALYSIS, 2011, 102 (04) : 781 - 788
  • [42] Secured Biometric Template Matching by Using Linear Discriminant Analysis
    Vijh, Surbhi
    Gaur, Deepak
    HYBRID INTELLIGENT SYSTEMS, HIS 2017, 2018, 734 : 194 - 203
  • [43] LINEAR DISCRIMINANT ANALYSIS OF CHARACTER SEQUENCES USING OCCURRENCES OF WORDS
    Dutta, Subhajit
    Chaudhuri, Probal
    Ghosh, Anil K.
    STATISTICA SINICA, 2014, 24 (01) : 493 - 514
  • [44] Ratio Sum Versus Sum Ratio for Linear Discriminant Analysis
    Wang, Jingyu
    Wang, Hongmei
    Nie, Feiping
    Li, Xuelong
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (12) : 10171 - 10185
  • [45] Linear and Deep Order-Preserving Wasserstein Discriminant Analysis
    Su, Bing
    Zhou, Jiahuan
    Wen, Ji-Rong
    Wu, Ying
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (06) : 3123 - 3138
  • [46] Asymptotic Generalization Bound of Fisher's Linear Discriminant Analysis
    Bian, Wei
    Tao, Dacheng
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2014, 36 (12) : 2325 - 2337
  • [47] WEIGHTED LINEAR DISCRIMINANT ANALYSIS BASED ON CLASS SALIENCY INFORMATION
    Xu, Lei
    Iosifidis, Alexandros
    Gabbouj, Moncef
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 2306 - 2310
  • [48] A genetically modified fuzzy linear discriminant analysis for face recognition
    Khoukhi, Amar
    Ahmed, Syed Faraz
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2011, 348 (10): : 2701 - 2717
  • [49] A LEAST-SQUARES MODEL TO ORTHOGONAL LINEAR DISCRIMINANT ANALYSIS
    Zhang, Taiping
    Fang, Bin
    Tang, Yuan Yan
    Shang, Zhaowei
    He, Guanghui
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2010, 24 (04) : 635 - 650
  • [50] Comparison of Linear Discriminant Analysis Approaches in Automatic Speech Recognition
    Jakovljevic, N.
    Miskovic, D.
    Janev, M.
    Secujski, M.
    Delic, V.
    ELEKTRONIKA IR ELEKTROTECHNIKA, 2013, 19 (07) : 76 - 79