Artificial Neural Network Modelling of the Mechanical Properties of Nanocomposite Polypropylene-Nanoclay

被引:8
作者
Ozcanli, Y. [1 ]
Beken, M. [2 ]
Cavus, F. Kosovali [3 ]
Hadiyeva, A. A. [4 ]
Sadigova, A. R. [4 ]
Alekperov, V. A. [4 ]
机构
[1] Yildiz Tech Univ, Dept Phys, TR-34220 Istanbul, Turkey
[2] Hal Univ, Beykent Univ, Dept Elect Elect Engn, TR-34398 Istanbul, Turkey
[3] Halic Univ, Dept Elect Technol, TR-34445 Istanbul, Turkey
[4] Azerbaijan Acad Sci, Inst Phys, AZ-1000 Baku, Azerbaijan
关键词
ANN; Polypropylene; Nanoclay; Mechanical Properties; POLYMER COMPOSITES; TEMPERATURE; BASE; TIME;
D O I
10.1166/jno.2017.2017
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This study presents the application of artificial neural network for mechanical properties of polypropylene and their composites with nanoclay. The effect of electric field on mechanical properties of polypropylene and nanocomposites is investigated. Then artificial neural network modelling has been used for predicting the mechanical lifetime of samples of pure polypropylene and their composites with nanoclay. Mechanical tensions ratio of nanoclay are used as input parameters and mechanical lifetime is used as output parameter. For artificial neural network modelling multi-layer perceptron architecture and back-propagation algorithm are used. The simulation results show that artificial neural network can predict the mechanical properties of polypropylene and their composites with nanoclay.
引用
收藏
页码:316 / 320
页数:5
相关论文
共 50 条
[41]   Micro-structural, thermal, and mechanical properties of injection-molded glass fiber/nanoclay/polypropylene composites [J].
Abd Rahman, Normasmira ;
Hassan, Aziz ;
Yahya, Rosiyah ;
Lafia-Araga, R. A. ;
Hornsby, Peter R. .
JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2012, 31 (04) :269-281
[42]   Influence of the Chemically Prepared Chitosan/ZnO Nanocomposite on the Biodegradability, Mechanical, and Thermal Properties of Polypropylene [J].
Hussein, Labiba ;
Mostafa, Mohamed Hassan ;
Darwish, Mohamed ;
Abdaleem, Abdaleem Hassan ;
Elsawy, Moataz Ahmed .
POLYMER-PLASTICS TECHNOLOGY AND MATERIALS, 2022, 61 (02) :131-144
[43]   Prediction of mechanical properties of A357 alloy using artificial neural network [J].
Yang, Xia-wei ;
Zhu, Jing-chuan ;
Nong, Zhi-sheng ;
He, Dong ;
Lai, Zhong-hong ;
Liu, Ying ;
Liu, Fa-wei .
TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2013, 23 (03) :788-795
[44]   Artificial Neural Network Model for the Prediction of Mechanical Properties of Hydrogenated TC21 Titanium Alloy [J].
Sun Yu ;
Zeng Weidong ;
Zhao Yongqing ;
Zhang Xuemin ;
Ma Xiong ;
Han Yuanfei .
RARE METAL MATERIALS AND ENGINEERING, 2012, 41 (06) :1041-1044
[45]   Mechanical property prediction of SPS processed GNP/PLA polymer nanocomposite using artificial neural network [J].
Adesina, O. T. ;
Jamiru, T. ;
Daniyan, I. A. ;
Sadiku, E. R. ;
Ogunbiyi, O. F. ;
Adesina, O. S. ;
Beneke, L. W. .
COGENT ENGINEERING, 2020, 7 (01)
[46]   Applicability of Artificial Neural Network and Nonlinear Regression to Predict Mechanical Properties of Equal Channel Angular Rolled Al5083 Sheets [J].
Mahmoodi, Masoud ;
Naderi, Ali .
LATIN AMERICAN JOURNAL OF SOLIDS AND STRUCTURES, 2016, 13 (08) :1515-1525
[47]   Study on mechanical properties and water uptake of polyester-nanoclay nanocomposite and analysis of wear property using RSM [J].
Shettar, Manjunath ;
Doshi, Meet ;
Rawat, Ayush Kumar .
JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2021, 14 :1618-1629
[48]   Optimization of Mechanical Properties of PP/Nanoclay/CaCO3 Ternary Nanocomposite Using Response Surface Methodology [J].
Zare, Yasser ;
Garmabi, Hamid ;
Sharif, Farhad .
JOURNAL OF APPLIED POLYMER SCIENCE, 2011, 122 (05) :3188-3200
[49]   On the improved mechanical properties of nanoclay reinforced ABS composite for fused deposition modelling [J].
Francis, Vishal ;
Jain, Prashant K. .
INTERNATIONAL JOURNAL OF MATERIALS & PRODUCT TECHNOLOGY, 2018, 57 (1-3) :20-42
[50]   Modelling of chemical processes using artificial neural network [J].
Verma, Rashi ;
Besta, Chandra Shekar .
INDIAN CHEMICAL ENGINEER, 2024, 66 (01) :84-105