Artificial Neural Network Modelling of the Mechanical Properties of Nanocomposite Polypropylene-Nanoclay

被引:8
作者
Ozcanli, Y. [1 ]
Beken, M. [2 ]
Cavus, F. Kosovali [3 ]
Hadiyeva, A. A. [4 ]
Sadigova, A. R. [4 ]
Alekperov, V. A. [4 ]
机构
[1] Yildiz Tech Univ, Dept Phys, TR-34220 Istanbul, Turkey
[2] Hal Univ, Beykent Univ, Dept Elect Elect Engn, TR-34398 Istanbul, Turkey
[3] Halic Univ, Dept Elect Technol, TR-34445 Istanbul, Turkey
[4] Azerbaijan Acad Sci, Inst Phys, AZ-1000 Baku, Azerbaijan
关键词
ANN; Polypropylene; Nanoclay; Mechanical Properties; POLYMER COMPOSITES; TEMPERATURE; BASE; TIME;
D O I
10.1166/jno.2017.2017
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This study presents the application of artificial neural network for mechanical properties of polypropylene and their composites with nanoclay. The effect of electric field on mechanical properties of polypropylene and nanocomposites is investigated. Then artificial neural network modelling has been used for predicting the mechanical lifetime of samples of pure polypropylene and their composites with nanoclay. Mechanical tensions ratio of nanoclay are used as input parameters and mechanical lifetime is used as output parameter. For artificial neural network modelling multi-layer perceptron architecture and back-propagation algorithm are used. The simulation results show that artificial neural network can predict the mechanical properties of polypropylene and their composites with nanoclay.
引用
收藏
页码:316 / 320
页数:5
相关论文
共 50 条
[21]   On nanoclay localization in polypropylene/poly(ethylene terephthalate) blends: Correlation with thermal and mechanical properties [J].
Entezam, Mehdi ;
Khonakdar, Hossein Ali ;
Yousefi, Ali Akbar ;
Jafari, Seyed Hassan ;
Wagenknecht, Udo ;
Heinrich, Gert .
MATERIALS & DESIGN, 2013, 45 :110-117
[22]   PREDICTION OF MECHANICAL STRENGTH OF POLYPROPYLENE FIBRE REINFORCED CONCRETE USING ARTIFICIAL NEURAL NETWORK [J].
Sangeetha, P. ;
Shanmugapriya, M. .
GRADEVNSKI MATERIJIALI I KONSTRUKCIJE-BUILDING MATERIALS AND STRUCTURES, 2020, 63 (04) :79-86
[23]   The Effects of Nanoclay on Mechanical Properties of High Density Polyethylene and Polypropylene Materials [J].
Akdogan, E. ;
Bektas, N. B. .
ACTA PHYSICA POLONICA A, 2018, 134 (01) :297-299
[24]   Preparation physical, mechanical properties and biodegradable study of SAN/EOC/nanoclay/proteins nanocomposite [J].
Goudarzian N. ;
Esmaeli M. ;
Mousavi S.M. ;
Hashemi S.A. ;
Zarei M. ;
Gholami A. ;
Yousefi K. .
Polymers from Renewable Resources, 2021, 12 (1-2) :19-34
[25]   Analysing and predicting dielectric properties of bamboo fiber filled polypropylene composites using artificial neural network [J].
Madhavi, S. ;
Mahesh, D. ;
Raju, N., V ;
Sen, Snigdha ;
Johns, Jobish .
JOURNAL OF THE INDIAN ACADEMY OF WOOD SCIENCE, 2024,
[26]   Statistical modelling of mechanical properties of microalloyed steels by application of artificial neural networks [J].
Dumortier, C ;
Lehert, P ;
Krupa, P ;
Charlier, A .
PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MICROALLOYING IN STEELS, 1998, 284-2 :393-400
[27]   Thermal and mechanical properties of polypropylene nanocomposite materials reinforced with cellulose nano whiskers [J].
Bahar, Elif ;
Ucar, Nuray ;
Onen, Aysen ;
Wang, Youjiang ;
Oksuz, Mustafa ;
Ayaz, Onur ;
Ucar, Mehmet ;
Demir, Ali .
JOURNAL OF APPLIED POLYMER SCIENCE, 2012, 125 (04) :2882-2889
[28]   EFFECT OF NANOCLAY DISPERSION ON PHYSICAL AND MECHANICAL PROPERTIES OF WOOD FLOUR/POLYPROPYLENE/GLASS FIBER HYBRID COMPOSITES [J].
Kord, Behzad ;
Kiakojouri, Seyed Mohsen Hosseini .
BIORESOURCES, 2011, 6 (02) :1741-1751
[29]   Development of prediction model for mechanical properties of batch annealed thin steel strip by using artificial neural network modelling [J].
Myllykoski, P ;
Larkiola, J ;
Nylander, J .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 1996, 60 (1-4) :399-404
[30]   Modeling of the viscoelastic properties of thermoset vinyl ester nanocomposite using artificial neural network [J].
Omari, Mohammad A. ;
Almagableh, Ahmad ;
Sevostianov, Igor ;
Ashhab, Moh'd Sami ;
Yaseen, Ahmad Bani .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2020, 150