A central limit theorem for Lipschitz-Killing curvatures of Gaussian excursions

被引:14
作者
Mueller, Dennis [1 ]
机构
[1] Karlsruhe Inst Technol, Dept Math, D-76131 Karlsruhe, Germany
关键词
Gaussian random field; Excursion set; Lipschitz-Killing curvature; Central limit theorem; Malliavin-Stein method; Wiener chaos expansion; FUNCTIONALS; EXPANSIONS; POINTS; FIELDS;
D O I
10.1016/j.jmaa.2017.03.036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies the excursion set of a real stationary isotropic Gaussian random field above a fixed level. We show that the standardized Lipschitz-Killing curvatures of the intersection of the excursion set with a window converges in distribution to a normal distribution as the window grows to the d-dimensional Euclidean space. Moreover a lower bound for the asymptotic variance is derived. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:1040 / 1081
页数:42
相关论文
共 34 条
[1]  
Adler R., 2009, Springer Monographs in Mathematics
[2]   ON THE EXISTENCE OF PATHS BETWEEN POINTS IN HIGH LEVEL EXCURSION SETS OF GAUSSIAN RANDOM FIELDS [J].
Adler, Robert J. ;
Moldavskaya, Elina ;
Samorodnitsky, Gennady .
ANNALS OF PROBABILITY, 2014, 42 (03) :1020-1053
[3]  
[Anonymous], 2015, MEASURE THEORY FINE
[4]  
[Anonymous], 2000, Cosmological Inflation and Large-Scale Structure
[5]  
[Anonymous], 2014, GEOMETRIC MEASURE TH
[6]  
ARCONES M. A, 1994, ANN PROBAB, V22, P2242
[7]  
Azai's JM., 2009, LEVEL SETS EXTREMA R
[8]  
Bernstein DS, 2009, Matrix mathematics: theory, facts, and formulas, V2nd
[9]   Phase singularities in isotropic random waves [J].
Berry, MV ;
Dennis, MR .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2000, 456 (2001) :2059-2079
[10]  
Cammarota V., 2016, ARXIV160309588