r.avaflow v1, an advanced open-source computational framework for the propagation and interaction of two-phase mass flows

被引:243
作者
Mergili, Martin [1 ,2 ]
Fischer, Jan-Thomas [3 ]
Krenn, Julia [1 ,4 ]
Pudasaini, Shiva P. [5 ]
机构
[1] Univ Nat Resources & Life Sci BOKU, Inst Appl Geol, Peter Jordan Str 70, A-1190 Vienna, Austria
[2] Univ Vienna, Dept Geog & Reg Res, Geomorphol Syst & Risk Res, Univ Str 7, A-1190 Vienna, Austria
[3] Austrian Res Ctr Forests BFW, Dept Nat Hazards, Rennweg 1, A-6020 Innsbruck, Austria
[4] Prov Govt Lower Austria, Grp Rd,Landhauspl 1-17, A-3109 St Polten, Austria
[5] Univ Bonn, Dept Geophys, Meckenheimer Allee 176, D-53115 Bonn, Germany
基金
奥地利科学基金会;
关键词
SAINT VENANT EQUATIONS; DEBRIS FLOWS; GRANULAR MASSES; AVALANCHE; MODEL; SNOW; ENTRAINMENT; ROCK; LANDSLIDES; DYNAMICS;
D O I
10.5194/gmd-10-553-2017
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
r.avaflow represents an innovative open-source computational tool for routing rapid mass flows, avalanches, or process chains from a defined release area down an arbitrary topography to a deposition area. In contrast to most existing computational tools, r. avaflow (i) employs a two-phase, interacting solid and fluid mixture model (Pudasaini, 2012); (ii) is suitable for modelling more or less complex process chains and interactions; (iii) explicitly considers both entrainment and stopping with deposition, i. e. the change of the basal topography; (iv) allows for the definition of multiple release masses, and/or hydrographs; and (v) serves with built-in functionalities for validation, parameter optimization, and sensitivity analysis. r. avaflow is freely available as a raster module of the GRASS GIS software, employing the programming languages Python and C along with the statistical software R. We exemplify the functionalities of r. avaflow by means of two sets of computational experiments: (1) generic process chains consisting in bulk mass and hydrograph release into a reservoir with entrainment of the dam and impact downstream; (2) the prehistoric Acheron rock avalanche, New Zealand. The simulation results are generally plausible for (1) and, after the optimization of two key parameters, reasonably in line with the corresponding observations for (2). However, we identify some potential to enhance the analytic and numerical concepts. Further, thorough parameter studies will be necessary in order to make r. avaflow fit for reliable forward simulations of possible future mass flow events.
引用
收藏
页码:553 / 569
页数:17
相关论文
共 87 条
[11]   Back calculation of the In den Arelen avalanche with RAMMS: interpretation of model results [J].
Christen, Marc ;
Bartelt, Perry ;
Kowalski, Julia .
ANNALS OF GLACIOLOGY, 2010, 51 (54) :161-168
[12]   ON PARTIAL DIFFERENCE EQUATIONS OF MATHEMATICAL PHYSICS [J].
COURANT, R ;
FRIEDRICHS, K ;
LEWY, H .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1967, 11 (02) :215-+
[13]   Numerical modelling of entrainment/deposition in rock and debris-avalanches [J].
Crosta, G. B. ;
Imposimato, S. ;
Roddeman, D. .
ENGINEERING GEOLOGY, 2009, 109 (1-2) :135-145
[14]   SIMPLIFIED 2ND-ORDER GODUNOV-TYPE METHODS [J].
DAVIS, SF .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1988, 9 (03) :445-473
[15]  
Emmer A., 2016, EGU20162181
[16]   A re-examination of the mechanism and human impact of catastrophic mass flows originating on Nevado Huascaran, Cordillera Blanca, Peru in 1962 and 1970 [J].
Evans, Stephen G. ;
Bishop, Nicholas F. ;
Smoll, Lionel Fidel ;
Murillo, Patricio Valderrama ;
Delaney, Keith B. ;
Oliver-Smith, Anthony .
ENGINEERING GEOLOGY, 2009, 108 (1-2) :96-118
[17]   A novel approach to evaluate and compare computational snow avalanche simulation [J].
Fischer, J. -T. .
NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 2013, 13 (06) :1655-1667
[18]   Multivariate parameter optimization for computational snow avalanche simulation [J].
Fischer, Jan-Thomas ;
Kofler, Andreas ;
Fellin, Wolfgang ;
Granig, Matthias ;
Kleemayr, Karl .
JOURNAL OF GLACIOLOGY, 2015, 61 (229) :875-888
[19]   Topographic curvature effects in applied avalanche modeling [J].
Fischer, Jan-Thomas ;
Kowalski, Julia ;
Pudasaini, Shiva P. .
COLD REGIONS SCIENCE AND TECHNOLOGY, 2012, 74-75 :21-30
[20]   Evaluating performance of simplified physically based models for shallow landslide susceptibility [J].
Formetta, Giuseppe ;
Capparelli, Giovanna ;
Versace, Pasquale .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2016, 20 (11) :4585-4603