The solution to the time-dependent Maxwell equations with charges in a 2D nonsmooth domain

被引:6
作者
Assous, F
Ciarlet, P
Garcia, E
机构
[1] CEA, DIF, DPTA, F-91680 Bruyeres Le Chatel, France
[2] ENSTA, UMA, F-75739 Paris, France
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 2000年 / 330卷 / 05期
关键词
D O I
10.1016/S0764-4442(00)00159-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In [3] and [2], we considered the numerical solution to the time-dependent Maxwell equations in the absence of charges in a 2D non-convex domain, using the so-called singular complement method (SCM), for which the computed fields are continuous. In this paper we present an extension of the SCM, which allows to solve efficiently the time-dependent Maxwell equations with charges, with almost no additional computational cost. Thus, the numerical solution to the Vlasov-Maxwell system of equations can be achieved by coupling the SCM to a particle solver (C) 2000 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:391 / 396
页数:6
相关论文
共 10 条
[1]   Regularity in time of the time-dependent Maxwell equations [J].
Assous, F ;
Ciarlet, P .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 327 (08) :719-724
[2]  
Assous F, 1998, RAIRO-MATH MODEL NUM, V32, P359
[3]  
ASSOUS F, UNPUB J COMPUT PHYS
[4]  
BIRDSALL CK, 1985, PLASMAS PHYSICS COMP
[5]   A COERCIVE BILINEAR FORM FOR MAXWELL EQUATIONS [J].
COSTABEL, M .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1991, 157 (02) :527-541
[6]  
Grisvard P., 1992, RMA, V22
[7]   UPDATING THE INVERSE OF A MATRIX [J].
HAGER, WW .
SIAM REVIEW, 1989, 31 (02) :221-239
[8]  
HEINTZE E, 1992, THESIS U PARIS 6
[10]  
Moussaoui M, 1996, CR ACAD SCI I-MATH, V322, P225