Unitary designs and codes

被引:79
作者
Roy, Aidan [1 ]
Scott, A. J. [2 ]
机构
[1] Univ Calgary, Dept Math & Stat, Inst Quantum Informat Sci, Calgary, AB T2N 1N4, Canada
[2] Griffith Univ, Ctr Quantum Dynam, Ctr Quantum Comp Technol, Brisbane, Qld 4111, Australia
基金
加拿大自然科学与工程研究理事会; 澳大利亚研究理事会;
关键词
Unitary design; Unitary code; Unitary group; Rank bound; Linear programming bound; Delsarte bound; Spherical design; Spherical code; Quantum process tomography; Zonal polynomial; BOUNDS; SPACES;
D O I
10.1007/s10623-009-9290-2
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A unitary design is a collection of unitary matrices that approximate the entire unitary group, much like a spherical design approximates the entire unit sphere. In this paper, we use irreducible representations of the unitary group to find a general lower bound on the size of a unitary t-design in U(d), for any d and t. We also introduce the notion of a unitary code-a subset of U(d) in which the trace inner product of any pair of matrices is restricted to only a small number of distinct absolute values-and give an upper bound for the size of a code with s inner product values in U(d), for any d and s. These bounds can be strengthened when the particular inner product values that occur in the code or design are known. Finally, we describe some constructions of designs: we give an upper bound on the size of the smallest weighted unitary t-design in U(d), and we catalogue some t-designs that arise from finite groups.
引用
收藏
页码:13 / 31
页数:19
相关论文
共 50 条
[41]   QUANTUM DESIGNS: FOUNDATIONS OF A NONCOMMUTATIVE DESIGN THEORY [J].
Zauner, Gerhard .
INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2011, 9 (01) :445-507
[42]   The Roelcke compactification of unitary groups [J].
Uspenskij, VV .
ABELIAN GROUPS, MODULE THEORY, AND TOPOLOGY: PROCEEDINGS IN HONOUR OF ADALBERTO ORSATTI'S 60TH BIRTHDAY, 1998, 201 :411-419
[43]   On the Grassmann modules for the unitary groups [J].
de Bruyn, Bart .
LINEAR & MULTILINEAR ALGEBRA, 2010, 58 (07) :887-902
[44]   The triple distribution of codes and ordered codes [J].
Trinker, Horst .
DISCRETE MATHEMATICS, 2011, 311 (20) :2283-2294
[45]   On the algebraic structure of the unitary group [J].
Ricard, Eric ;
Rosendal, Christian .
COLLECTANEA MATHEMATICA, 2007, 58 (02) :181-192
[46]   Signal Codes: Convolutional Lattice Codes [J].
Shalvi, Ofir ;
Sommer, Naftali ;
Feder, Meir .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (08) :5203-5226
[47]   BOUNDS FOR PROJECTIVE CODES FROM SEMIDEFINITE PROGRAMMING [J].
Bachoc, Christine ;
Passuello, Alberto ;
Vallentin, Frank .
ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2013, 7 (02) :127-145
[48]   A family of complex irreducible characters possessed by unitary and special unitary groups defined over local rings [J].
Szechtman, F .
COMMUNICATIONS IN ALGEBRA, 2003, 31 (05) :2381-2401
[49]   From Random Matrix Theory to Coding Theory: Volume of a Metric Ball in Unitary Group [J].
Wei, Lu ;
Pitaval, Renaud-Alexandre ;
Corander, Jukka ;
Tirkkonen, Olav .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (05) :2814-2821
[50]   Polar Codes' Simplicity, Random Codes' Durability [J].
Wang, Hsin-Po ;
Duursma, Iwan M. .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (03) :1478-1508