Unitary designs and codes

被引:74
作者
Roy, Aidan [1 ]
Scott, A. J. [2 ]
机构
[1] Univ Calgary, Dept Math & Stat, Inst Quantum Informat Sci, Calgary, AB T2N 1N4, Canada
[2] Griffith Univ, Ctr Quantum Dynam, Ctr Quantum Comp Technol, Brisbane, Qld 4111, Australia
基金
加拿大自然科学与工程研究理事会; 澳大利亚研究理事会;
关键词
Unitary design; Unitary code; Unitary group; Rank bound; Linear programming bound; Delsarte bound; Spherical design; Spherical code; Quantum process tomography; Zonal polynomial; BOUNDS; SPACES;
D O I
10.1007/s10623-009-9290-2
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A unitary design is a collection of unitary matrices that approximate the entire unitary group, much like a spherical design approximates the entire unit sphere. In this paper, we use irreducible representations of the unitary group to find a general lower bound on the size of a unitary t-design in U(d), for any d and t. We also introduce the notion of a unitary code-a subset of U(d) in which the trace inner product of any pair of matrices is restricted to only a small number of distinct absolute values-and give an upper bound for the size of a code with s inner product values in U(d), for any d and s. These bounds can be strengthened when the particular inner product values that occur in the code or design are known. Finally, we describe some constructions of designs: we give an upper bound on the size of the smallest weighted unitary t-design in U(d), and we catalogue some t-designs that arise from finite groups.
引用
收藏
页码:13 / 31
页数:19
相关论文
共 50 条
  • [31] Overgroups of unitary groups
    Petrov, V
    [J]. K-THEORY, 2003, 29 (03): : 147 - 174
  • [32] Odd unitary groups
    Petrov V.A.
    [J]. Journal of Mathematical Sciences, 2005, 130 (3) : 4752 - 4766
  • [33] ISOMETRIES OF THE UNITARY GROUP
    Hatori, Osamu
    Molnar, Lajos
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (06) : 2127 - 2140
  • [34] Multicomponent Subspace Codes in Network Coding
    Gabidulin, E. M.
    Pilipchuk, N., I
    [J]. FIFTH INTERNATIONAL CONFERENCE ON ENGINEERING AND TELECOMMUNICATION (ENT-MIPT 2018), 2018, : 40 - 48
  • [35] Unitary groups and ramified extensions
    Cruickshank, J.
    Szechtman, F.
    [J]. COMMUNICATIONS IN ALGEBRA, 2019, 47 (01) : 101 - 113
  • [36] On unitary representability of topological groups
    Jorge Galindo
    [J]. Mathematische Zeitschrift, 2009, 263
  • [37] Unitary operators with decomposable corners
    Andruchow, Esteban
    [J]. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2020, 15 (01)
  • [38] AUTOMATIC CONTINUITY FOR THE UNITARY GROUP
    Tsankov, Todor
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (10) : 3673 - 3680
  • [39] On biunimodular vectors for unitary matrices
    Fuehr, Hartmut
    Rzeszotnik, Ziemowit
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 484 : 86 - 129
  • [40] On unitary representability of topological groups
    Galindo, Jorge
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2009, 263 (01) : 211 - 220