Paediatric Bone Age Assessment Using Deep Convolutional Neural Networks

被引:118
作者
Iglovikov, Vladimir I. [1 ]
Rakhlin, Alexander [2 ]
Kalinin, Alexandr A. [3 ]
Shvets, Alexey A. [4 ]
机构
[1] ODS Ai, San Francisco, CA 94107 USA
[2] Neuromation OU, EE-10111 Tallinn, Estonia
[3] Univ Michigan, Ann Arbor, MI 48109 USA
[4] MIT, Cambridge, MA 02142 USA
来源
DEEP LEARNING IN MEDICAL IMAGE ANALYSIS AND MULTIMODAL LEARNING FOR CLINICAL DECISION SUPPORT, DLMIA 2018 | 2018年 / 11045卷
关键词
Medical imaging; Computer-aided diagnosis (CAD); Computer vision; Image recognition; Deep learning;
D O I
10.1007/978-3-030-00889-5_34
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Skeletal bone age assessment is a common clinical practice to diagnose endocrine and metabolic disorders in child development. In this paper, we describe a deep learning approach to the problem of bone age assessment using data from the 2017 Pediatric Bone Age Challenge organized by the Radiological Society of North America. This dataset consists of 12,600 radiological images. Each radiograph in the dataset is an image of a left hand labeled with bone age and sex of a patient. Our approach introduces a comprehensive preprocessing protocol based on the positive mining technique. We use images of whole hands as well as specific hand parts for both training and prediction. This allows us to measure the importance of specific hand bones for automated bone age analysis. We further evaluate the performance of the suggested methods in the context of skeletal development stages. Our approach outperforms other common methods for bone age assessment.
引用
收藏
页码:300 / 308
页数:9
相关论文
共 16 条
[1]  
[Anonymous], 2017, RSNA PEDIAT BONE AGE
[2]   Opportunities and obstacles for deep learning in biology and medicine [J].
Ching, Travers ;
Himmelstein, Daniel S. ;
Beaulieu-Jones, Brett K. ;
Kalinin, Alexandr A. ;
Do, Brian T. ;
Way, Gregory P. ;
Ferrero, Enrico ;
Agapow, Paul-Michael ;
Zietz, Michael ;
Hoffman, Michael M. ;
Xie, Wei ;
Rosen, Gail L. ;
Lengerich, Benjamin J. ;
Israeli, Johnny ;
Lanchantin, Jack ;
Woloszynek, Stephen ;
Carpenter, Anne E. ;
Shrikumar, Avanti ;
Xu, Jinbo ;
Cofer, Evan M. ;
Lavender, Christopher A. ;
Turaga, Srinivas C. ;
Alexandari, Amr M. ;
Lu, Zhiyong ;
Harris, David J. ;
DeCaprio, Dave ;
Qi, Yanjun ;
Kundaje, Anshul ;
Peng, Yifan ;
Wiley, Laura K. ;
Segler, Marwin H. S. ;
Boca, Simina M. ;
Swamidass, S. Joshua ;
Huang, Austin ;
Gitter, Anthony ;
Greene, Casey S. .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2018, 15 (141)
[3]  
Gilsanz V., 2005, HAND BONE AGE DIGITA, DOI [10.1007/b138568, DOI 10.1007/B138568]
[4]  
Hochreiter, 2016, ARXIV151107289, P1
[5]  
Iglovikov V., 2018, Ternausnet: U-Net with VGG11 encoder pre-trained on Imagenet for image segmentation, P1
[6]   Deep learning in pharmacogenomics: from gene regulation to patient stratification [J].
Kalinin, Alexandr A. ;
Higgins, Gerald A. ;
Reamaroon, Narathip ;
Soroushmehr, Sayedmohammadreza ;
Allyn-Feuer, Ari ;
Dinov, Ivo D. ;
Najarian, Kayvan ;
Athey, Brian D. .
PHARMACOGENOMICS, 2018, 19 (07) :629-650
[7]   Performance of a Deep-Learning Neural Network Model in Assessing Skeletal Maturity on Pediatric Hand Radiographs [J].
Larson, David B. ;
Chen, Matthew C. ;
Lungren, Matthew P. ;
Halabi, Safwan S. ;
Stence, Nicholas V. ;
Langlotz, Curtis P. .
RADIOLOGY, 2018, 287 (01) :313-322
[8]   Fully Automated Deep Learning System for Bone Age Assessment [J].
Lee, Hyunkwang ;
Tajmir, Shahein ;
Lee, Jenny ;
Zissen, Maurice ;
Yeshiwas, Bethel Ayele ;
Alkasab, Tarik K. ;
Choy, Garry ;
Do, Synho .
JOURNAL OF DIGITAL IMAGING, 2017, 30 (04) :427-441
[9]  
Rakhlin A., 2017, BIORXIV
[10]   Deep Convolutional Neural Networks for Breast Cancer Histology Image Analysis [J].
Rakhlin, Alexander ;
Shvets, Alexey ;
Iglovikov, Vladimir ;
Kalinin, Alexandr A. .
IMAGE ANALYSIS AND RECOGNITION (ICIAR 2018), 2018, 10882 :737-744