The Sasakian Geometry of the Heisenberg Group

被引:0
作者
Boyer, Charles P. [1 ]
机构
[1] Univ New Mexico, Dept Math & Stat, Albuquerque, NM 87131 USA
来源
BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE | 2009年 / 52卷 / 03期
关键词
Heisenberg group; CR structures; Sasaki cone; extremal metrics; CR; MANIFOLDS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note I study the Sasakian geometry associated to the standard CR structure on the Heisenberg group, and prove that the Sasaki cone coincides with the set of extremal Sasakian structures. Moreover, the scalar curvature of these extremal metrics is constant if and only if the metric has Phi-sectional curvature -3. I also briefly discuss some relations with the well-know sub-Riemannian geometry of the Heisenberg group as well as the standard Sasakian structure induced on compact quotients.
引用
收藏
页码:251 / 262
页数:12
相关论文
共 32 条
  • [1] Kahler geometry of toric varieties and extremal metrics
    Abreu, M
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 1998, 9 (06) : 641 - 651
  • [2] [Anonymous], 2008, OXFORD MATH MONOGRAP
  • [3] [Anonymous], 2007, AMS/IP Studies in Advanced Mathematics
  • [4] [Anonymous], 1987, RESULTS MATH RELATED
  • [5] [Anonymous], 2001, J. Symplectic Geom.
  • [6] [Anonymous], 2002, AM MATH SOC, DOI DOI 10.1090/SURV/091
  • [7] [Anonymous], 1969, Tohoku Math. J., DOI 10.2748/tmj/1178242960
  • [8] [Anonymous], 1989, ANN MATH STUDIES
  • [9] [Anonymous], 1974, Acta Math.
  • [10] Lie group structures on groups of diffeomorphisms and applications to Cr manifolds
    Baouendi, MS
    Rothschild, LP
    Winkelmann, J
    Zaitsev, D
    [J]. ANNALES DE L INSTITUT FOURIER, 2004, 54 (05) : 1279 - +