Kinetics of the two-dimensional long-range Ising model at low temperatures

被引:12
|
作者
Agrawal, Ramgopal [1 ]
Corberi, Federico [2 ,3 ,4 ]
Lippiello, Eugenio [5 ]
Politi, Paolo [6 ,7 ]
Puri, Sanjay [1 ]
机构
[1] Jawaharlal Nehru Univ, Sch Phys Sci, New Delhi 110067, India
[2] Univ Salerno, Dipartimento Fis ER Caianiello, Via Giovanni Paolo II 132, I-84084 Salerno, Italy
[3] Univ Salerno, Ist Nazl Fis Nucl, Grp Collegato Salerno, Via Giovanni Paolo II 132, I-84084 Salerno, Italy
[4] Univ Salerno, CNISM, Unita Salerno, Via Giovanni Paolo II 132, I-84084 Salerno, Italy
[5] Univ Campania, Dipartimento Matemat & Fis, Viale Lincoln 5, I-81100 Caserta, Italy
[6] CNR, Ist Sistemi Complessi, Via Madonna Piano 10, I-50019 Sesto Fiorentino, Tuscany, Italy
[7] Ist Nazl Fis Nucl, Sez Firenze, Via G Sansone 1, I-50019 Sesto Fiorentino, Tuscany, Italy
关键词
Temperature - Monte Carlo methods - Growth kinetics - Intelligent systems;
D O I
10.1103/PhysRevE.103.012108
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the low-temperature domain growth kinetics of the two-dimensional Ising model with long-range coupling J(r) similar to r(-(d+sigma)), where d = 2 is the dimensionality. According to the Bray-Rutenberg predictions, the exponent sigma controls the algebraic growth in time of the characteristic domain size L(t), L(t) similar to t(1/z), with growth exponent z = 1 + sigma for sigma < 1 and z = 2 for sigma > 1. These results hold for quenches to a nonzero temperature T > 0 below the critical temperature T-c. We show that, in the case of quenches to T = 0, due to the long-range interactions, the interfaces experience a drift which makes the dynamics of the system peculiar. More precisely, we find that in this case the growth exponent takes the value z = 4/3, independently of sigma, showing that it is a universal quantity. We support our claim by means of extended Monte Carlo simulations and analytical arguments for single domains.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Phase-Separation Kinetics in the Two-Dimensional Long-Range Ising Model br
    Mueller, Fabio
    Christiansen, Henrik
    Janke, Wolfhard
    PHYSICAL REVIEW LETTERS, 2022, 129 (24)
  • [2] Critical behavior of the two-dimensional Ising model with long-range correlated disorder
    Dudka, M.
    Fedorenko, A. A.
    Blavatska, V.
    Holovatch, Yu
    PHYSICAL REVIEW B, 2016, 93 (22)
  • [3] Zero-temperature coarsening in the two-dimensional long-range Ising model
    Christiansen, Henrik
    Majumder, Suman
    Janke, Wolfhard
    PHYSICAL REVIEW E, 2021, 103 (05)
  • [4] Ordering kinetics of the two-dimensional voter model with long-range interactions
    Corberi, Federico
    Smaldone, Luca
    PHYSICAL REVIEW E, 2024, 109 (03)
  • [5] Nonuniversality of Aging during Phase Separation of the Two-Dimensional Long-Range Ising Model
    Mueller, Fabio
    Christiansen, Henrik
    Janke, Wolfhard
    PHYSICAL REVIEW LETTERS, 2024, 133 (23)
  • [6] LONG-RANGE ORDER IN TWO-DIMENSIONAL XXZ MODEL
    You, Wen-Long
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2009, 23 (09): : 2195 - 2201
  • [7] Phase ordering kinetics of the long-range Ising model
    Christiansen, Henrik
    Majumder, Suman
    Janke, Wolfhard
    PHYSICAL REVIEW E, 2019, 99 (01)
  • [8] Ferromagnetism in the two-dimensional Hubbard model with long-range hopping
    Farkasovsky, Pavol
    Cencarikova, Hana
    CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2013, 11 (01): : 119 - 123
  • [9] Ordering behavior of the two-dimensional Ising spin glass with long-range correlated disorder
    Muenster, L.
    Norrenbrock, C.
    Hartmann, A. K.
    Young, A. P.
    PHYSICAL REVIEW E, 2021, 103 (04)
  • [10] Spontaneous antiferromagnetic long-range order in the two-dimensional hybrid model of localized Ising spins and itinerant electrons
    Strecka, Jozef
    Tanaka, Akinori
    Canova, Lucia
    Verkholyak, Taras
    PHYSICAL REVIEW B, 2009, 80 (17)