Residual-free bubbles for advection-diffusion problems:: the general error analysis

被引:1
作者
Brezzi, F
Marini, D
Süli, E
机构
[1] CNR, Dipartimento Matemat, I-27100 Pavia, Italy
[2] CNR, Ist Anal Numer, I-27100 Pavia, Italy
[3] Univ Oxford, Comp Lab, Oxford OX1 3QD, England
关键词
Mathematics Subject Classification (1991):65N30;
D O I
10.1007/s002110050476
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop the general a priori error analysis of residual-free bubble finite element approximations to non-self-adjoint elliptic problems of the form (epsilon A + C)u = f subject to homogeneous Dirichlet boundary condition, where A is a symmetric second-order elliptic operator, C is a skew-symmetric first-order differential operator, and epsilon is a positive parameter. Optimal-order error bounds are derived in various norms, using piecewise polynomial finite elements of degree k greater than or equal to 1.
引用
收藏
页码:31 / 47
页数:17
相关论文
共 50 条
[41]   A Priori Error Estimates for Optimal Control Problems Governed by Transient Advection-Diffusion Equations [J].
Hongfei Fu ;
Hongxing Rui .
Journal of Scientific Computing, 2009, 38 :290-315
[42]   Capturing small scales in elliptic problems using a residual-free bubbles finite element method [J].
Sangalli, G .
MULTISCALE MODELING & SIMULATION, 2003, 1 (03) :485-503
[43]   On the stability of the residual-free bubbles for the Navier-Stokes equations [J].
Nesliturk, AI .
ACTA MATHEMATICA SCIENTIA, 2005, 25 (04) :715-730
[44]   Exponentially fitted IMEX methods for advection-diffusion problems [J].
Cardone, Angelamaria ;
D'Ambrosio, Raffaele ;
Paternoster, Beatrice .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 316 :100-108
[45]   A Stable Domain Decomposition Technique for Advection-Diffusion Problems [J].
Alund, Oskar ;
Nordstrom, Jan .
JOURNAL OF SCIENTIFIC COMPUTING, 2018, 77 (02) :755-774
[46]   Numerical stability of the BEM foe advection-diffusion problems [J].
Peratta, A ;
Popov, V .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2004, 20 (05) :675-702
[47]   Construction of a peridynamic model for transient advection-diffusion problems [J].
Zhao, Jiangming ;
Chen, Ziguang ;
Mehrmashhadi, Javad ;
Bobaru, Florin .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 126 :1253-1266
[48]   Non-unified Compact Residual-Distribution Methods for Scalar Advection-Diffusion Problems [J].
Singh, Vishal ;
Chizari, Hossain ;
Ismail, Farzad .
JOURNAL OF SCIENTIFIC COMPUTING, 2018, 76 (03) :1521-1546
[49]   Deformation Formulas and Inverse Problems for Advection-diffusion Equations [J].
Nakagiri, Shin-ichi .
SIMULATION AND MODELING RELATED TO COMPUTATIONAL SCIENCE AND ROBOTICS TECHNOLOGY, 2012, 37 :61-78
[50]   Discontinuous Galerkin methods for magnetic advection-diffusion problems [J].
Wang, Jindong ;
Wu, Shuonan .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 174 :43-54