Residual-free bubbles for advection-diffusion problems:: the general error analysis

被引:1
作者
Brezzi, F
Marini, D
Süli, E
机构
[1] CNR, Dipartimento Matemat, I-27100 Pavia, Italy
[2] CNR, Ist Anal Numer, I-27100 Pavia, Italy
[3] Univ Oxford, Comp Lab, Oxford OX1 3QD, England
关键词
Mathematics Subject Classification (1991):65N30;
D O I
10.1007/s002110050476
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop the general a priori error analysis of residual-free bubble finite element approximations to non-self-adjoint elliptic problems of the form (epsilon A + C)u = f subject to homogeneous Dirichlet boundary condition, where A is a symmetric second-order elliptic operator, C is a skew-symmetric first-order differential operator, and epsilon is a positive parameter. Optimal-order error bounds are derived in various norms, using piecewise polynomial finite elements of degree k greater than or equal to 1.
引用
收藏
页码:31 / 47
页数:17
相关论文
共 50 条
[31]   Stabilized Element Residual Method (SERM): A posteriori error estimation for the advection-diffusion equation [J].
Agarwal, AN ;
Pinsky, PM .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 74 (1-2) :3-17
[32]   Stabilized element residual method (SERM): a posteriori error estimation for the advection-diffusion equation [J].
Stanford Univ, Stanford, United States .
J Comput Appl Math, 1-2 (3-17)
[33]   Isogeometric analysis in advection-diffusion problems: Tension splines approximation [J].
Manni, Carla ;
Pelosi, Francesca ;
Sampoli, M. Lucia .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 236 (04) :511-528
[34]   A nonlinear subgrid method for advection-diffusion problems [J].
Santos, Isaac P. ;
Almeida, Regina C. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (45-48) :4771-4778
[35]   Modeling subgrid viscosity for advection-diffusion problems [J].
Brezzi, F ;
Houston, P ;
Marini, D ;
Süli, E .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2000, 190 (13-14) :1601-1610
[36]   The decomposition method for Cauchy advection-diffusion problems [J].
Lesnic, D .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 49 (04) :525-537
[37]   High-order residual-based compact schemes for advection-diffusion problems [J].
Corre, Christophe ;
Lerat, Alain .
COMPUTERS & FLUIDS, 2008, 37 (05) :505-519
[38]   The Differential Transform Method for Advection-Diffusion Problems [J].
Patricio, M. F. ;
Rosa, P. A. .
PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 22, 2007, 22 :456-+
[39]   ON THE STABILITY OF THE RESIDUAL-FREE BUBBLES FOR THE NAVIER-STOKES EQUATIONS [J].
Ali I.Nesliturk .
Acta Mathematica Scientia, 2005, (04) :715-730
[40]   A Priori Error Estimates for Optimal Control Problems Governed by Transient Advection-Diffusion Equations [J].
Fu, Hongfei ;
Rui, Hongxing .
JOURNAL OF SCIENTIFIC COMPUTING, 2009, 38 (03) :290-315