An Adaptive Synthetic Cell Based on Mechanosensing, Biosensing, and Inducible Gene Circuits

被引:58
作者
Garamella, Jonathan [1 ]
Majumder, Sagardip [2 ]
Liu, Allen P. [2 ,3 ,4 ,5 ]
Noireaux, Vincent [1 ]
机构
[1] Univ Minnesota, Dept Phys & Astron, Minneapolis, MN 55455 USA
[2] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Biomed Engn, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Cellular & Mol Biol Program, Ann Arbor, MI 48109 USA
[5] Univ Michigan, Biophys Program, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
synthetic cell; MscL; cell-free transcription-translation (TXTL); gene circuits; biosensing; ESCHERICHIA-COLI; FREE EXPRESSION; BIOLOGY; CONSTRUCTION;
D O I
10.1021/acssynbio.9b00204
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The bottom-up assembly of synthetic cell systems capable of recapitulating biological functions has become a means to understand living matter by construction. The integration of biomolecular components into active, cell-sized, genetically programmed compartments remains, however, a major bottleneck for building synthetic cells. A primary feature of real cells is their ability to actively interact with their surroundings, particularly in stressed conditions. Here, we construct a synthetic cell equipped with an inducible genetic circuit that responds to changes in osmotic pressure through the mechanosensitive channel MscL. Liposomes loaded with an E. coli cell-free transcription-translation (TXTL) system are induced with IPTG when exposed to hypo-osmotic solution, resulting in the expression of a bacterial cytoskeletal protein MreB. MreB associates with the membrane to generate a cortex-like structure. Our work provides the first example of molecular integration that couples mechanosensitivity, gene expression, and self-assembly at the inner membrane of synthetic cells.
引用
收藏
页码:1913 / 1920
页数:8
相关论文
共 33 条
[1]   Engineering genetic circuit interactions within and between synthetic minimal cells [J].
Adamala, Katarzyna P. ;
Martin-Alarcon, Daniel A. ;
Guthrie-Honea, Katriona R. ;
Boyden, Edward S. .
NATURE CHEMISTRY, 2017, 9 (05) :431-439
[2]   Compartmentalization of an all-E. coli Cell-Free Expression System for the Construction of a Minimal Cell [J].
Caschera, Filippo ;
Noireaux, Vincent .
ARTIFICIAL LIFE, 2016, 22 (02) :185-195
[3]   Integration of biological parts toward the synthesis of a minimal cell [J].
Caschera, Filippo ;
Noireaux, Vincent .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2014, 22 :85-91
[4]   Ionic strength-dependent persistence lengths of single-stranded RNA and DNA [J].
Chen, Huimin ;
Meisburger, Steve P. ;
Pabit, Suzette A. ;
Sutton, Julie L. ;
Webb, Watt W. ;
Pollack, Lois .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (03) :799-804
[5]   Chemical approaches to synthetic biology [J].
Chiarabelli, Cristiano ;
Stano, Pasquale ;
Luisi, Pier Luigi .
CURRENT OPINION IN BIOTECHNOLOGY, 2009, 20 (04) :492-497
[6]   Monodisperse Uni- and Multicompartment Liposomes [J].
Deng, Nan-Nan ;
Yelleswarapu, Maaruthy ;
Huck, Wilhelm T. S. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (24) :7584-7591
[7]   TXTL-based approach to synthetic cells [J].
Garamella, Jonathan ;
Garenne, David ;
Noireaux, Vincent .
METABOLONS AND SUPRAMOLECULAR ENZYME ASSEMBLIES, 2019, 617 :217-239
[8]   The All E-coli TX-TL Toolbox 2.0: A Platform for Cell-Free Synthetic Biology [J].
Garamella, Jonathan ;
Marshall, Ryan ;
Rustad, Mark ;
Noireaux, Vincent .
ACS SYNTHETIC BIOLOGY, 2016, 5 (04) :344-355
[9]   Cell-free transcription-translation: engineering biology from the nanometer to the millimeter scale [J].
Garenne, David ;
Noireaux, Vincent .
CURRENT OPINION IN BIOTECHNOLOGY, 2019, 58 :19-27
[10]   Toehold Switches: De-Novo-Designed Regulators of Gene Expression [J].
Green, Alexander A. ;
Silver, Pamela A. ;
Collins, James J. ;
Yin, Peng .
CELL, 2014, 159 (04) :925-939